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Abstract— We present an approach for the analysis of clinical
data from extremely preterm infants, in order to determine
if they are ready to be removed from invasive endotracheal
mechanical ventilation. The data includes over 100 clinical
features, and the subject population is naturally quite small.
To address this problem, we use feature selection, specifically
mutual information, in order to choose a small subset of
informative features. The other challenge we address is class
imbalance, as there are many more babies that succeed extu-
bation than those who fail. To handle this problem, we use
SMOTE, an algorithm which creates synthetic examples of the
minority class.

I. INTRODUCTION

The majority of extremely preterm infants (gestational
age less than 28 weeks) undergo endotracheal intubation
and mechanical ventilation (ETT-MV) after birth in order
to survive [1]. ETT-MV is associated with many complica-
tions, including Bronchopulmonary Dysplasia (BPD), one of
the most serious pulmonary morbidities in preterm infants
[2,3]. According to Laughon et al., each week of ETT-MV
carries a 2.7-fold increase in the risk of developing BPD
[4]. Hence, limiting the duration of ETT-MV is desirable.
On the other hand, early extubation has its own hazards,
including compromised gas exchange, and ultimately the
need for reintubation, which is technically challenging in
infants that are very small [5]. Therefore,determining extu-
bation readiness is a major challenge in neonatal intensive
care units (NICUs). This decision is often physician-driven
and subjective, leading to considerable variations in practice
and high rates of extubation failure [6,7,8,9] (10% to 70%,
depending on the exact definition of failure).

The goal of our research is to develop a tool to help
physicians predict extubation readiness in extremely preterm
infants using prospectively collected clinical and physiolog-
ical data. Commonly, clinical studies work with datasets
that do not contain many patients, since data collection is
time consuming and expensive. These datasets also contain
a very large number of features of interest; for example,
in our study, more than a hundred clinical features are
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recorded per patient. As a consequence, analyzing this data
means that we need to work in a feature space whose
dimensionality is close to, or even greater than, the number
of data points. Automated prediction models, which rely on
machine learning approaches, have been investigated with
the goal of helping clinicians to take an objective decision
about the best time at which to extubate [10,11]. These
machine learning techniques are useful for finding patterns
in data, but when the data has too many features, fitting the
model becomes difficult. On one hand, discarding relevant
features hurts the prediction accuracy. On the other hand
keeping too many features can lead to overfitting of the
model to the datatset on which it is trained, which leads
to poor generalization on new, unseen data. Hence, a good
mechanism for feature selection is critical in this case. We
address this problem by first using clinical knowledge in
order to select a fairly large subset of clinical variables, and
then using mutual information in order to select a small set
of relevant features for further use in classification.

A second major problem which arises in clinical studies is
a class imbalance between the number of subjects exhibiting
“abnormal” or pathological behaviour (which tends to be
small) and the number of subjects in the ‘“healthy” or
desirable-outcome class. Usually, the number of pathological
examples is much smaller, yet these are cases for which
an accurate classification is critical. In the context of our
study, the number of babies who fail extubation represents a
small proportion of the overall population (25%). Therefore,
dealing with this class imbalance is imperative. Since our
study population is also small overall, downsampling the
majority class is not feasible. Instead, we use an algorithm
called SMOTE [12], which creates synthetic examples of the
minority class during the training process.

The results obtained on data collected in an ongoing
clinical trial show that our feature selection and oversam-
pling approach increase the reliability and accuracy of the
classification, but there is room for further improvement.

II. METHODOLOGY

A. Data

All infants admitted to the NICUs at the Royal Victo-
ria Hospital, Jewish General Hospital, Montreal Children’s
Hospital (Montreal, QC, Canada), Detroit Medical Centre
(Detroit, Michigan, USA) and Women and Infants Hospital
(Providence, Rhode Island, USA) with a birth weight < 1250
grams and requiring mechanical ventilation are eligible for



this ongoing prospective clinical study (clinicaltrials.gov:
NCT01909947). For the patients who are enrolled, heart rate
and respiratory measurements are recorded immediately prior
to extubation. A clinical database has also been developed
for each infant and includes patient demographics (such
as gestational age, birth weight, day of life at extubation),
Peri-Extubation characteristics (such as ventilator settings
and blood gases) and important clinical outcomes (including
extubation failure or success). Extubation failure was defined
as the need for reintubation within 7 days following extuba-
tion. In this paper we analyze a dataset of 120 extremely
premature infants whose data has been collected so far.
The experimental procedures on the infants described in this
paper were approved by the McGill University Health Center
Research Ethics Board and by each institution’s research
ethics committee. Additionally, the written informed consent
was obtained from parents.

B. Feature Selection

For the purpose of being inclusive, over 100 clinical
features are collected for each patient. In order to focus our
attention on the most relevant features, the physicians on our
team pre-selected 32 features that they thought could help
to predict extubation outcome. These include demographic
information (such as birth weight, gestational age, day of
life), information about certain medications or pathologies,
as well as blood gases. While this step narrowed down the
space of features, their number was still too large compared
to the number of patients. As a result, a step of automated
feature selection was performed, in order to retain only the
features that rate most predictive of the extubation outcome.
We used mutual information for this step.

Mutual information (MI) quantifies how much we know
about a random variable given another random variable
[13]. More formally, given random variables X and Y,
MI measures the KL-divergence of their joint distribution
p(X,Y) with respect to the distribution p(X)p(Y) which
would be obtained if the variables were independent:

MI(X,Y) = Z Zp(x’y)k)gpp(x’y)

S (x)p(y)

MI(X,Y) = 0 means the variables are independent, and the
higher M1, the more one variable tells us about the value
of the other.

We computed the MI of each of the preselected features
with the clinical outcome, and retained all the features whose
MI was above a certain threshold.

C. Correcting class imbalance with SMOTE

Synthetic Minority Oversampling Technique (SMOTE)
tackles the common problem of imbalanced datasets, in
which the class of interest ("abnormal cases’) represents a
small fraction of the available data [12]. A standard approach
to class imbalance is to under-sample the majority class, but
this can be undesirable when working with a clinical dataset
which is fairly small already. Furthermore, methods based
random oversampling, which consist of choosing examples

from the minority class at random until a desired class
ratio is reached, can bias the classifier, by leaving out
important examples or over-emphasizing certain examples
just by chance. Methods based on misclassification cost can
be used with certain classification methods, but because they
require changing the optimization criterion of the learning
algorithm, they are not useful for certain very powerful
algorithms whose optimization criterion cannot be changed.

For each instance ¢ belonging to the minority class,
SMOTE creates an additional synthetic example by taking
the difference between its feature vector, x;, and the feature
vector x of one of its randomly chosen nearest neighbours
k. The number of nearest neighbours considered is a parame-
ter of the algorithm. The result is then multiplied by a random
number between 0 and 1 and added to x;, which results in
an artificial example whose features lie on the line segments
between ¢’s and k’s features. SMOTE thus induces larger
regions in which the minority class label is represented. This
is advantageous if one assumes a contiguous spatial structure
of these examples.

D. Standard Scaling

It is also important to note that the features were passed
through a standard scaling algorithm to achieve normaliza-
tion to O mean and unit standard deviation. This is standard
practice, as many machine learning algorithms require vari-
ables to be in the same range to work reliably.

E. Classification

All of the experiments were carried out using the popular,
open-source SciKitLearn library', written in Python. We
developed a set of scripts in order to carry out parameter
optimization for the algorithms in this library, using several
machines in parallel.

Crossvalidation is mandatory in order to ensure that a
machine learning algorithm generalizes well to unseen data.
We performed leave-one-out (LOO) cross-validation, leaving
in turn each example out for testing while training on the
remaining n— 1 examples (where n = 120). All our statistics
are measured by averaging over the test sets.

We used SMOTE with 5 nearest neighbours and doubled
the minority class, going from 30 to 60 extubation failures
in the dataset. The algorithm was performed at each fold of
cross-validation solely on the training set and only original,
non-synthetic data was used to test the classifiers.

For classification, we used four algorithms: Logistic re-
gression (LR), Decision trees (DT), and Support Vector
Machines with linear and with Gaussian kernels. LR uses
the logistic function to compute the relationship between an
instance’s features and its label, producing a linear decision
boundary between the two classes. This linear boundary
property makes the classifier easy to understand but often
too simple for complicated tasks.

DTs consist of internal nodes where specific features are
tested, and leaves, which represent a class label. A new

Thttp://scikit-learn.org/stable/



example will be routed, at each internal node, to one branch,
corresponding to the outcome of the test. The example
is assigned the label of the leaf it reaches. The learning
algorithm determines the tree using criteria for measuring
the quality of candidate tests, using measures of the purity
of the resulting subsets of training data. DTs are nonlinear
classifiers, and are appealing because they allow one to
inspect the structure of the tree and decide the importance
of each feature.

Support Vector Machines (SVMs) are a powerful clas-
sification algorithm which can provide non-linear decision
boundaries. It works by defining a separation or margin
between the two classes in a high-dimensional feature space,
in which instances are likely to become linearly separable.
This margin is defined by the instances (vectors) nearest
to the decision boundary, i.e., the data points which would
modify the boundary, if removed. The goal is to maximize
the width of the margin. The trick to producing a non-
linear boundary is to use kernel functions, which implicitly
compute a dot product of feature vectors:

k(xi,z5) = ¢(x:)p(z;)

in time that is linear in the size of the inputs z rather than in
the size of ¢(x), which is much cheaper computationally.
One of the most commonly used is the Gaussian kernel
function:
M=l
202 '
One can tune the function by changing its width, v = o2[14].
SVMs also have a built-in regularization mechanism,
which can be tuned to prevent overfitting. Intuitively, this
“knob” allows misclassification in the data, in order to
provide a wider margin between the decision boundary and
the instances (which leads to more robust classification). This
knob is controlled by a parameter, usually called C'. Allowing
too much misclassification leads to a biased hypothesis,
while allowing too little leads to overfitting. It is thus
important to find the optimal combination of C' and ~y. For
this purpose, we perform a grid search over these parameters.

k(z;,x;) = exp(

III. RESULTS

LR, DTs and linear SVMs had very poor result on our
data set, never working better than chance. This is consistent
with previous findings in our work [15,16], which showed
that linear classifiers are not sufficient in this difficult clinical
population. SVM with a Gaussian kernel yields much better
results than the other classifiers by allowing a non-linear
separation of the data. We therefore only show the results
obtained by SVM with feature selection, both with and
without oversampling with SMOTE. The Receiver Operative
Characteristic (ROC) are plotted on the test data.

A. Feature Selection

Table I shows the features that were obtained as a result of
selecting the features with M1 > 0.3. The selected features
relate to baby’s maturity (age, weight) and to the blood
gasses (HCOg). Blood gases (pH, HCO3, PCO,) are used

to diagnose hypoventilation and respiratory acidosis. Hence,
these features selected with MI make sense clinically.

TABLE I
MUTUAL INFORMATION SCORES > 0.3

Feature MI Score
BE? 0.409
pCO22 0.385
Birth Weight 0.356
Weight at time of extubation 0.341
HCO3? 0.328
Post-conceptual age 0.309

B. Classification without oversampling

Mutual Information Score > 0.3

0.8- |

e
o
N

True Positive Rate
14
=
~

0.2+ -

// — ROC curve (area = 0.72)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 1. ROC curve for dataset with features having a MI score > 0.3
without oversampling.

As can be seen in Fig. 1, the classifier obtained is better
than chance, but the ROC curve is given by only one point.
Hence, although the AUC is reasonable, it is hard to conclude
that this classifier is reliable. One would like to obtain several
points to have a true curve, and to be able to trade off
between false positives and false negatives.

C. Classification with oversampling
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Mutual Information Score > 0.3 with SMOTE
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Fig. 2. ROC curve for dataset with features having a MI score > 0.3 with
oversampling with SMOTE.

2Blood gases measured prior to extubation



Fig. 2 shows thet results of experiments done with over-
sampled datasets. The AUC is improved, from 0.72 to 0.76.
But more importantly, we observe:

e an increase in reliability: there are significantly more
points on the ROC curve.

o an decrease of the FPR: several classifiers have lower
FPR while often maintaining a high true positive rate.

Both improvements can be attributed to the fact that the
addition of synthetic examples makes the decision bound-
aries more general and increases the coverage of the minority
class, thus making it easier to detect.

Finally, it is important to note that all babies who under-
went extubation were thought to be ready to be extubated
by the physicians, so the fact that some of the failure cases
are correctly caught by the automated approach is quite
significant.

IV. DISCUSSION

We succeeded to build reliable and relatively accurate
classifiers using clinical data by performing state-of-the-art
feature selection and oversampling techniques. Classification
has a lot to gain from using mutual information to choose
features that influence class labels and unbalanced datasets
can greatly benefit from synthetic oversampling techniques
such as SMOTE. It is key to note that linear classifiers are not
sufficient for this task. We anticipate that SMOTE would be a
very useful tool for others who work with highly unbalanced
dataset.

While the results are positive, there is a lot of room for
improvement. We believe that physiological data recorded
prior to extubation contains crucial information to predict
extubation readiness in neonates. Using this data un the
classification is the subject of ongoing work in our research
group.

As our data collection is ongoing, it is imperative to
repeat the experiments once we have a larger dataset to
allow us to tackle overfitting problems more efficiently and
have smaller standard error bars. A larger dataset would also
allow us to consider more features while maintaining the
reliability of our classifier, which could ultimately improve
its performance.

We are also planning on implementing a mixture of
experts model (MEM) to benefit from both the clinical and
physiological (time series) data. The MEM allows us to build
a complex classfier from simple learners by choosing the
weight for each expert given an input instance. This is done
by what we call a gating function, which is learned in the
model. In our case, the experts will be the classifiers for the
time series and the clinical data.

Finally, our current model outputs a binary prediction -
success or failure. We ultimately want to build a predictive
model where the output is the confidence or probability that
the extubation will be successful.
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