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Abstract
We develop a new bisimulation (pseudo)metric for weighted finite automata (WFA) that gener-
alizes Boreale’s linear bisimulation relation. Our metrics are induced by seminorms on the state
space of WFA. Our development is based on spectral properties of sets of linear operators. In
particular, the joint spectral radius of the transition matrices of WFA plays a central role. We
also study continuity properties of the bisimulation pseudometric, establish an undecidability res-
ult for computing the metric, and give a preliminary account of applications to spectral learning
of weighted automata.
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1 Introduction

Weighted finite automata (WFA) form a fundamental computational model that subsumes
probabilistic automata and various other types of quantitative automata. They are much
used in machine learning and natural language processing, and are certainly relevant to
quantitative verification and to the theory of control systems [16]. The theory of minimization
of weighted finite automata goes back to Schützenberger [30] which implicitly exploits duality
as made explicit in [9]. In [6] we began studying approximate minimization of WFA by using
spectral methods. The idea there was to obtain automata for a given weighted language,
smaller than the minimal possible which, of course, means that the automaton constructed
does not exactly recognize the given weighted language but comes “close enough.”

In [6] the notion of proximity to the desired language was captured by an ¸
2

distance.
However, a powerful technique for understanding approximate behavioural equivalence is
by using more general behavioural metrics. In particular, with a behavioural pseudometric
we recover bisimulation as the kernel. Such behavioural metrics for Markov processes were
proposed by Giacalone et al. [20] and the first successful pseudometric that has bisimulation
as its kernel is due to Desharnais et al. [14, 15]; see [28] for an expository account. The
subject was greatly developed by van Breugel and Worrell [32] among others. For WFA,
a beautiful treatment of linear bisimulation relations was given by Boreale [10]. We were
motivated to develop a metric analogue of Boreale’s linear bisimulation with the eventual goal

�
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XX:2 Bisimulation Metrics for Weighted Automata

of using it to analyze approximate minimization. In the present paper we develop the general
theory of bisimulation (pseudo)metrics for WFA (and for weighted languages) deferring the
application to approximate minimization to future work.

It turns out that in the linear algebraic setting appropriate to WFA it is a (semi)norm
rather than a (pseudo)metric that is the fundamental quantity of interest. Indeed, as one
might expect, in a vector space setting norms and seminorms are the natural objects from
which metrics and pseudometrics can be derived. The bisimulation metric that we construct
actually comes from a bisimulation seminorm which is obtained, as usual, using the Banach
fixed-point theorem. Interestingly, we also provide a closed-form expression for the fixed
point bisimulation seminorm and use it to study several of its properties.

Our main contributions are:
1. The construction of bisimulation seminorms and the associated pseudometric on WFA

(Section 3). The existence of the fixed point depends on some delicate applications of
spectral theory, specifically the joint spectral radius of a set of matrices.

2. We obtain metrics on the space of weighted languages from the metrics on WFA (Section 3).
3. We show two continuity properties of the metric; one using definitions due to Jaeger et

al. [24] and the other developed here (Section 4).
4. We show undecidability results for computing our metrics (Section 5).
5. Nevertheless, we show that one can successfully exploit these metrics for applications in

machine learning (Section 6).

The metric of the present paper led naturally to some sophisticated topological and
spectral theory arguments which one would not have anticipated from the treatment of linear
bisimulation in [10].

2 Background

In this section we recall preliminary definitions and results that will be used throughout the
rest of the paper. We assume the reader is familiar with norms and vector spaces; these topics
are reviewed in the appendix [4]. Here we discuss Boreale’s linear bisimulation relations for
weighted automata and provide a short primer on the joint spectral radius of a set of linear
operators.

2.1 Strings and Weighted Automata
Given a finite alphabet � we let �ı denote the set of all finite strings with symbols in � and
let �Œ denote the set of all infinite strings with symbols in � and we write �Ê = �ı fi �Œ.
The length of a string x œ �Ê is denoted by |x|; |x| = Œ whenever x œ �Œ. Given a string
x œ �Ê and an integer 0 Æ t Æ |x| we write xÆt to denote the prefix containing the first
t symbols from x, with xÆ0

= ‘. Given an integer t Ø 0 we will write �t (resp. �Æt) for
the set of all strings with length equal to (resp. at most) t. The reverse of a finite string
x = x

1

x
2

· · · xt is given by x̄ = xtxt≠1

· · · x
1

.
We only consider automata with weights in the real field R. We will mostly be concerned

with properties of weighted automata that are invariant under change of basis. Accordingly,
our presentation uses weighted automata whose state space is an abstract real vector space.

A weighted finite automaton (WFA) is a tuple A = È�, V, –, —, {·‡}‡œ�

Í where � is a
finite alphabet, V is a finite-dimensional vector space, – œ V is a vector representing the
initial weights, — œ V ú is a linear form representing the final weights, and ·‡ : V æ V is a
linear map representing the transition indexed by ‡ œ �. The vectors in V are called states
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of A. We shall denote by n = dim(A) = dim(V ) the dimension of A. The transition maps
·‡ can be extended to arbitrary finite strings in the obvious way.

A weighted automaton A = È�, V, –, —, {·‡}‡œ�

Í computes the function fA : �ı æ R
(sometimes also referred to as the weighted language in R�

ı recognized by A) given by
fA(x) = —(·x(–)). Given a WFA A = È�, V, –, —, {·‡}‡œ�

Í and a state v œ V we define the
weighted automaton Av = È�, V, v, —, {·‡}‡œ�

Í obtained from A by taking v as the initial
state. We call fAv the function realized by state v. Similarly, give a linear form w œ V ú

we define the weighted automaton Aw = È�, V, –, w, {·‡}‡œ�

Í where the final weights are
replaced by w. The reverse of a weighted automaton A is Ā = È�, V ú, —, –, {·€

‡ }‡œ�

Í, where
·€

‡ : V ú æ V ú is the transpose of ·‡. It is easy to check that the function computed by Ā
satisfies f

¯A(x) = fA(x̄) for all x œ �ı.

2.2 Linear Bisimulations
Linear bisimulations for weighted automata were introduced by Boreale in [10]. Here we
recall the key definition and several important facts.
I Definition 1. A linear bisimulation for a weighted automaton A = È�, V, –, —, {·‡}‡œ�

Í
on a vector space V is a linear subspace W ™ V satisfying the following two conditions:
1. —(v) = 0 for all v œ W ; that is, W ™ ker(—), and
2. W is invariant by each ·‡; that is, ·‡(W ) ™ W for all ‡ œ �.
Furthermore, two states u, v œ V are called W -bisimilar if u ≠ v œ W .

In particular, the trivial subspace W = {0} is always a linear bisimulation. The notion of
W -bisimilarity induces an equivalence relation on V which we will denote by ≥W . The kernel
of an equivalence relation ≥ on a vector space V is the set of vectors in the equivalence class
of the null vector: ker(≥) = {v œ V : v ≥ 0}. It is immediate from the definition that for
any bisimulation relation ≥W we have ker(≥W ) = W .

Given a weighted automaton A we say that u, v œ V are A-bisimilar if there exists a
bisimulation W for A such that u ≥W v. The corresponding equivalence relation is denoted
by ≥A. Boreale showed in [10] that for every WFA A there exists a bisimulation WA such
that ≥WA exactly coincides with ≥A, and the bisimulation can be obtained as WA = ker(≥A).
He also showed that WA is in fact the largest linear bisimulation for A in the sense that any
other linear bisimulation W for A must be a subspace of WA. Accordingly, we shall refer to
the relation ≥A and the subspace WA as A-bisimulation.

Note that the subspaces considered in Definition 1 are independent of the initial state –
of A. In fact, A-bisimilarity can be understood as a relation between possible initial states
for A. Indeed, using the definition of ≥A it is immediate to check that for any states u, v œ V
we have u ≥A v if and only if fAu = fAv . This implies that in a WFA where the bisimulation
WA corresponding to ≥A satisfies WA = {0} every state realizes a di�erent function. Such
an automaton is called observable. A weighted automaton is called reachable if the reverse
Ā is observable.

A weighted automaton A is minimal if for any other weighted automaton AÕ over the
same alphabet such that fA = fAÕ we have dim(A) Æ dim(AÕ). It is also shown in [10] that
linear bisimulations can be used to characterize minimality, in the sense that A is minimal if
and only if it is observable and reachable.

2.3 Joint Spectral Radius
The joint spectral radius of a set of linear operators is a natural generalization of the spectral
radius of a single linear operator. The joint spectral radius and several equivalent notions

ICALP 2017
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have been thoroughly studied since the 1960’s. These radiuses arise in many fundamental
problems in operator theory, control theory, and computational complexity. See [25] for an
introduction to their properties and applications. Here we recall the basic definitions and
some important facts related to quasi-extremal norms.

I Definition 2. The joint spectral radius of a collection M = {·i}iœI of linear maps ·i : V æ
V on a normed vector space (V, Î · Î) is defined as

fl(M) = lim sup
tæŒ

A
sup
T œIt

.....
Ÿ

iœT

·i

.....

B
1/t

= lim
tæŒ

A
sup
T œIt

.....
Ÿ

iœT

·i

.....

B
1/t

.

The second equality above is a generalization of Gelfand’s formula for the spectral radius
of a single operator due to Daubechies and Lagarias [11, 12]. An important fact about the
joint spectral radius is that fl(M) is independent of the norm Î · Î, i.e. one obtains the same
radius regardless of the norm given to the vector space V . The joint spectral radius behaves
nicely with respect to direct sums, in the sense that given two sets of operators M = {·i}iœI

and M Õ = {· Õ
i}iœI , then fl({·i ü · Õ

i}iœI) = max{fl(M), fl(M Õ)}.
The notion of joint spectral radius can be readily extended to weighted automata. Let

A = È�, V, –, —, {·‡}‡œ�

Í be a weighted automaton with states on a normed vector space
(V, Î · Î). Then the spectral radius of A is defined as fl(A) = fl(M) where M = {·‡}‡œ�

. In
this case the definition above can be rewritten as

fl(A) = lim
tæŒ

3
sup
xœ�

t

Î·xÎ
4

1/t

.

Now we discuss several fundamental properties of the joint spectral radius that will play a
role in the rest of the paper. Like in the case of the classic spectral radius, the joint spectral
radius is upper bounded by the norms of the operators in M : fl(M) Æ supiœI Î·iÎ. Obtaining
lower bounds for fl(M) is a major problem directly related to the hardness of computing
approximations to fl(M). An approach often considered in the literature is to search for
extremal norms. A norm Î · Î on V is extremal for M if the corresponding induced norm
satisfies Î·iÎ Æ fl(M) for all i œ I. This immediately implies that given an extremal norm for
M we have fl(M) = supiœI Î·iÎ. Conditions on M guaranteeing the existence of an extremal
norm have been derived by Barabanov and others; see [33] and references therein. However,
most of these conditions are quite technical and algorithmically hard to verify. On the other
hand, if one only insists on approximate extremality, the following result, due to Rota and
Strang, guarantees the existence of such norms for any set of matrices M that is compact
with respect to the topology generated by the operator norm in V .

I Theorem 3 ([29]). Let M = {·i}iœI be a compact set of linear maps on V . For any ÷ > 0
there exists a norm Î · Î on V that satisfies Î·i(v)Î Æ (fl(M) + ÷)ÎvÎ for every i œ I and
every v œ V .

The statement above is in fact a special case of Proposition 1 in [29]; a proof for finite sets
M can be found in [8]. An important result due to Barabanov [7] states that the function
M ‘æ fl(M) defined on compact sets of operators is continuous (see also [22]). Another result
that we will need was again proved by Barbanov in [7] and it states that if M is a bounded
set of linear operators and M̄ denotes its closure then fl(M) = fl(M̄). Note that if M is
bounded then its closure M̄ is compact by the Heine–Borel theorem.

A special case which makes the joint spectral radius easier to work with is when the
set of matrices M is irreducible. A set of linear maps M is called irreducible if the only
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subspaces W ™ V such that ·i(W ) ™ W for all i œ I are W = {0} and W = V . If there
exists a non-trivial subspace W µ V invariant by all ·i we say that M is reducible. In fact,
almost all sets of matrices are irreducible in following sense. The Hausdor� distance between
two sets of linear maps M and M Õ on the same normed vector space (V, Î · Î) is given by

dH(M, M Õ) = max
;

sup
·œM

inf
· ÕœM Õ

Î· ≠ · ÕÎ, sup
· ÕœM Õ

inf
·œM

Î· ≠ · ÕÎ
<

.

It is possible to show that irreducible sets of matrices are dense among compact sets of
matrices with respect to the topology induced by the Haussdor� distance. Furthermore,
Wirth showed in [33] that the joint spectral radius is locally Lipschitz continuous around
irreducible sets of matrices with respect to the Hausdor� topology (see also [26] for explicit
expressions for the Lipschitz constants). This can be seen as an extension of Barabanov’s
continuity result providing extra information about the behaviour of the function M ‘æ fl(M).

Again, the concept of irreducibility can be readily extended to WFA. We say that the
weighted automaton A = È�, V, –, —, {·‡}‡œ�

Í is irreducible if M = {·‡}‡œ�

is irreducible.
This concept will play a role in Section 6. The following result provides a characterization
of irreducibility for weighted automata in terms of minimality. In particular, the result
shows that irreducibility is a stronger condition than minimality. A proof is provided in the
appendix [4].

I Theorem 4. A weighted automaton A = È�, V, –, —, {·‡}‡œ�

Í is irreducible if and only if
Aw

v is minimal for all v œ V and w œ V ú with v ”= 0 and w ”= 0.

3 Bisimulation Seminorms and Pseudometrics for WFA

In the same way that the largest bisimulation relation in many settings can be obtained
as a fixed point of a certain operator on equivalence relations, a possible way to define
bisimulation (pseudo)metrics is via a similar fixed-point construction. See [17] for an example
in the case of Markov decision processes. In this section, the fixed-point construction is used
to obtain a bisimulation seminorm on states of a given WFA. Given two WFA we can build
their di�erence automaton A and compute the corresponding seminorm of the initial state of
A. This construction yields a bisimulation pseudometric between weighted automata.

Let A = È�, V, –, —, {·‡}‡œ�

Í be a weighted automaton over the vector space V . Let S
denote the set of all seminorms on V . Given “ > 0 we define the map FA,“ : S æ S between
seminorms given by

FA,“(s)(v) = |—(v)| + “ max
‡œ�

s(·‡(v)) . (1)

Note that this definition is independent of the initial state –, as is the linear bisimulation for
A described in Section 2.2. In the sequel we shall write F instead of FA,“ whenever A and “
are clear from the context.

To verify that F : S æ S is well defined we must check that the image F (s) of any
seminorm s is also a seminorm. Absolute homogeneity is immediate by the linearity of —
and ·‡ and the absolute homogeneity of s. For the subadditivity we have

F (s)(u + v) = |—(u + v)| + “ max
‡œ�

s(·‡(u + v))

= |—(u) + —(v)| + “ max
‡œ�

s(·‡(u) + ·‡(v))

Æ |—(u)| + |—(v)| + “ max
‡œ�

(s(·‡(u)) + s(·‡(v)))

Æ F (s)(u) + F (s)(v) ,

ICALP 2017



XX:6 Bisimulation Metrics for Weighted Automata

where the last inequality uses subadditivity of the maximum.
To construct bisimulation seminorms for the states of a weighted automaton A we shall

study the fixed points of FA,“ . We start by showing that FA,“ has a unique fixed point
whenever “ is small enough.

I Theorem 5. Let A = È�, V, –, —, {·‡}‡œ�

Í. If “ < 1/fl(A), then FA,“ has a unique fixed
point.

Proof. For simplicity, let F = FA,“ . By the assumption on “ there exists some ” > 0 such
that “ Æ 1/(fl(A)+”). Now take M = {·‡}‡œ�

and ÷ = ”/2 and let Î ·Î be the corresponding
quasi-extremal norm on V obtained from Theorem 3. Using this norm we can endow S
with the metric given by d(s, sÕ) = supÎvÎÆ1

|s(v) ≠ sÕ(v)| to obtain a complete metric space
(S, d). To see this, note that for a fixed v with ÎvÎ Æ 1 the sequence (sn(v)) is Cauchy, hence
convergent. Call this limit s(v); it is straightforward to see that this defines a seminorm.
Thus, if we show that F is a contraction on S with respect to this metric, then by Banach’s
fixed point theorem F has a unique fixed point. To see that F is indeed a contraction we
start by observing that:

d(F (s), F (sÕ)) = sup
ÎvÎÆ1

|F (s)(v)≠F (sÕ)(v)| = “ sup
ÎvÎÆ1

---max
‡

s(·‡(v)) ≠ max
‡Õ

sÕ(·‡Õ(v))
--- . (2)

Fix any v œ V with ÎvÎ Æ 1 and suppose without loss of generality (otherwise we exchange
s and sÕ) that max‡ s(·‡(v)) Ø max‡Õ sÕ(·‡Õ(v)). Then, letting ‡ú = arg max‡ s(·‡(v)) and
using the absolute homogeneity of s and sÕ, it can be shown that:

---max
‡

s(·‡(v)) ≠ max
‡Õ

sÕ(·‡Õ(v))
--- Æ Î·‡ú(v)Îd(s, sÕ) . (3)

We refer the reader to the appendix [4], for a full derivation. Finally, we use the definition of
Î · Î and the choices of ” and ÷ to see that

“Î·‡ú(v)Î Æ “(fl(A) + ÷)ÎvÎ Æ fl(A) + ”/2
fl(A) + ”

< 1 ,

from which we conclude by combining (2) with (3) that d(F (s), F (sÕ)) < d(s, sÕ). J

We now exhibit the fixed point of FA,“ in closed form. This provides a useful formula for
studying properties of the resulting seminorm.

I Theorem 6. Let A = È�, V, –, —, {·‡}‡œ�

Í. Suppose “ < 1/fl(A) and let sA,“ œ S be the
fixed point of FA,“ . Then for any v œ V we have

sA,“(v) = sup
xœ�

Œ

Œÿ

t=0

“t|—(·xÆt
(v))| = sup

xœ�

Œ

Œÿ

t=0

“t|fAv (xÆt)| . (4)

The proof can be found in the appendix [4]. The next theorem is the main result of this
section. It shows that any seminorm arising as a fixed point of FA,“ captures the notion of
A-bisimulation through its kernel for any “. Namely, two states u, v œ V are A-bisimilar if
and only if sA,“(u ≠ v) = 0. Note that this result is independent of the choice of “, as long
as the fixed point of FA,“ is guaranteed to exist.

I Definition 7. Let A = È�, V, –, —, {·‡}‡œ�

Í be a weighted automaton with A-bisimulation
≥A. We say that a seminorm s over V is a bisimulation seminorm for A if ker(s) = ker(≥A).
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I Theorem 8. Let A = È�, V, –, —, {·‡}‡œ�

Í. For any 0 < “ < 1/fl(A) the fixed point
sA,“ œ S of FA,“ is a bisimulation seminorm for A.

Proof. For simplicity, let F = FA,“ and s = sA,“ . Since WA = ker(≥A) is the largest
bisimulation for A, it su�ces to show that ker(s) is a bisimulation for A with WA ™ ker(s).
For the first property we recall that ker(s) is a linear subspace of V and note that for any
v œ ker(s) we have, using Theorem 6,

0 = s(v) = |—(v)| + sup
xœ�

Œ

Œÿ

t=1

“t|—(·xÆt
(v))| Ø |—(v)| Ø 0 .

Therefore ker(s) ™ ker(—). Using the fact that —(v) = 0, we can also verify the invariance of
ker(s) under all ·‡, namely s(·‡(v)) = 0 for all v œ ker(s) and ‡ œ � (the full derivation is
shown in the appendix [4]). Therefore ker(s) is a bisimulation for A.

Now let v œ WA. Since WA is contained in the kernel of — and is invariant for all ·‡, we
see that —(·x(v)) = 0 for all x œ �ı. Therefore, using the expression for s given in Theorem 6
we obtain s(v) = 0. This concludes the proof. J

Because every fixed point of FA,“ is a seminorm whose kernel agrees with that of Boreale’s
bisimulation relation ≥A, we shall call them “-bisimulation seminorms for A. Interestingly,
we can show that when A is observable then every “-bisimulation seminorm is in fact a norm.

I Corollary 9. Let A = È�, V, –, —, {·‡}‡œ�

Í and “ < 1/fl(A). If A is observable then the
“-bisimulation seminorm sA,“ is a norm.

Proof. By Theorem 8 and the observability of A we have ker(sA,“) = ker(≥A) = {0}. Thus,
sA,“ is a norm. J

Given an automaton A, and state vectors v, w œ V , the pseudometric between states of
A induced by sA,“ is dA,“(v, w) = sA,“(v ≠ w). Pseudometrics of this form will be called
“-bisimulation pseudometrics. By Corollary 9, if A is observable then dA,“ is in fact a metric.

To conclude this section we show how to use our “-bisimulation pseudometrics to define a
pseudometric between weighted automata. In order to capture the idea of distance between
two WFA let us build the automaton computing the di�erence between their functions.
Given weighted automata Ai = È�, Vi, –i, —i, {·i,‡}‡œ�

Í for i = 1, 2, we define their di�erence
automaton as A = A

1

≠ A
2

= È�, V, –, —, {·‡}‡œ�

Í where V = V
1

ü V
2

, – = –
1

ü (≠–
2

),
— = —

1

ü—
2

, and ·‡ = ·
1,‡ ü ·

2,‡ for all ‡ œ �. Note that A satisfies fA(x) = fA1(x)≠fA2(x)
for all x œ �ı and that fl(A) = max{fl(A

1

), fl(A
2

)}. Then, letting sA,“ be the bisimulation
seminorm for A we are ready to define our bisimulation distance between weighted automata.

I Definition 10. Let A
1

and A
2

be two weighted automata and let A be their di�erence
automaton. For any “ < 1/fl(A) we define the “-bisimulation distance between A

1

and A
2

as d“(A
1

, A
2

) = sA,“(–).

By exploiting the closed form expression for sA,“ given in Theorem 6 we can provide a
closed form expression for d“ .

I Corollary 11. Let A
1

and A
2

two weighted automata and “ < 1/ max{fl(A
1

), fl(A
2

)}. Then
the “-bisimulation distance between A

1

and A
2

is given by

d“(A
1

, A
2

) = sup
xœ�

Œ

Œÿ

t=0

“t |fA1(xÆt) ≠ fA2(xÆt)| . (5)

ICALP 2017
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Using the properties of our bisimulation seminorms one can immediately see that d“ is
indeed a pseudometric between all pairs of WFA such that “ < 1/fl(A

1

≠ A
2

). It is also easy
to see that d“ captures the notion of equivalence between weighted automata, in the sense
that d“(A

1

, A
2

) = 0 if and only if fA1 = fA2 . Therefore, since minimal weighted automata
are unique up to a change of basis, the only way to have d“(A

1

, A
2

) = 0 when A
1

is minimal
is to have either A

1

= A
2

or A
2

is a non-minimal WFA recognizing the same weighted
language as A

1

. In particular, this implies that d“ is a metric on the set of all minimal WFA
A with “ < 1/fl(A).

4 Continuity Properties

In this section we study several continuity properties of our bisimulation pseudometrics
between weighted automata. The continuity notions we consider are adapted from those
presented by Jaeger et al. in [24], which are developed for labelled Markov chains. Here
we extend their definitions of parameter continuity and property continuity to the case
of weighted automata. Such notions can be motivated by applications of metrics between
transition systems to problems in machine learning [15, 19, 18]; see Section 6 for a discussion
on how to use our bisimulation pseudometrics in the analysis of learning algorithms.

4.1 Parameter Continuity
Given a sequence of weighted automata Ai converging to a weighted automaton A, parameter
continuity captures the notion that, as the weights in Ai converge to the weights in A, the
behavioural distance between Ai and A tends to zero. To make this formal we first define
convergence for a sequence of automata and then parameter continuity.
I Definition 12. Let (Ai)iœN be a sequence of WFA Ai = È�, V, –i, —i, {·i,‡}‡œ�

Í over
the same alphabet � and normed vector space (V, Î · Î). We say that the sequence (Ai)
converges to A = È�, V, –, —, {·‡}‡œ�

Í if limiæŒ Î–i ≠ –Î = 0, limiæŒ Î—i ≠ —Îú = 0, and
limiæŒ Î·i,‡ ≠ ·‡Î = 0 for all ‡ œ �.
I Definition 13. A pseudometric d between weighted automata is parameter continuous if for
any sequence (Ai)iœN converging to some weighted automaton A we have limiæŒ d(A, Ai) = 0.

The main result of this section is the following theorem stating that our bisimulation
pseudometric d“ is parameter continuous.
I Theorem 14. The “-bisimulation distance between weighted automata is parameter con-
tinuous for any sequence of weighted automata (Ai)iœN converging to a weighted automaton
A with “ < 1/fl(A).

The proof of this result is quite technical and combines the following two tools:
1. A technical estimate of d“(A, Ai) in terms of the distance between the weights of A and

Ai with respect to a certain norm (Lemma 25 in the appendix [4]). This result also plays
a prominent result in Section 6.

2. Several topological properties of the joint spectral radius discussed in Section 2.3.
These proofs are given in the appendix [4].

4.2 Input Continuity
Inspired by the notion of property continuity presented in [24], input g-continuity encapsulates
the idea that an upper bound on the behavioural distance between two systems should entail
an upper bound on the di�erence between their outputs on any input x œ �ı.
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I Definition 15. Let g : N æ R be such that g(l) > 0 for all l œ N. A distance function d
between weighted automata is input g-continuous when the following holds: if (Ai)iœN is a
sequence of weighted automata such that limiæŒ d(A, Ai) = 0 for some weighted automaton
A, then one has

lim
iæŒ

sup
xœ�

ı

|fA(x) ≠ fAi(x)|
g(|x|) = 0 . (6)

Note the special case g(l) = 1 is tightly related to the notion of property continuity
presented in [24]. The authors of that paper consider di�erences between the probabilities of
the same event under di�erent labelled Markov chains, and therefore always have numbers
between 0 and 1. However, for general weighted automata the quantity |fA(x) ≠ fAÕ(x)| can
grow unboundedly with |x|. Thus, in some cases we will need to have a g(|x|) growing with
|x| in order to guarantee that (6) stays bounded. The next two results, whose proofs are
deferred to the appendix [4], show that essentially g(|x|) = “≠|x| is the threshold between
input continuity and input non-continuity in our “-bisimulation pseudometrics.

I Theorem 16. The pseudometric d“ from Definition 10 is input g-continuous for any
g(l) = �(“≠l).

Note that when “ > 1 (i.e. when dealing with weighted automata with fl(A) Æ 1) we have
g(l) = 1 œ �(“≠l). This shows that in the case of weighted automata A where every transition
operator ·‡ can be represented by a stochastic matrix—a fact that implies fl(A) = 1—our
“-bisimulation pseudometric is property continuous with respect to the definition in [24].

Further, if g does not grow fast enough as a function of the size of x œ �ı, then our
bisimulation pseudometric is not input g-continuous. In particular, the proof of Theorem 17
provides simple examples of cases where d“ is not input g-continuous.

I Theorem 17. Let 0 < “ < 1. The pseudometric d“ from Definition 10 is not input
g-continuous for any g(l) = co(l) with c > 1.

5 An Undecidability Result

In this section we will prove that given a weighted automaton A = È�, V, –, —, {·‡}‡œ�

Í,
a discount factor “ < 1/fl(A), and a threshold ‹ > 0, it is undecidable to check whether
sA,“(–) > ‹. This implies that in general the seminorms and pseudometrics studied in the
previous sections are not computable.

The proof of our undecidability result involves a reduction from an undecidable planning
problem. Partially observable Markov decision processes (POMDPs) are a generalization of
Markov Decision Processes (MDPs) where we have a set of observations � and conditional
observation probabilities O. Each state emits some observation o œ � with a certain
probability, and so we have a belief over which state we are in after taking an action and
observing o. An MDP is a special case of a POMDP where each state has a unique observation,
and an unobservable Markov decision process (UMDP) is a special case of a POMDP where
all the states emit the same observation. While planning for infinite-horizon UMDPs is
undecidable [27], planning for finite-horizon POMDPs is decidable.

Formally, a UMDP is a tuple U = È�, Q, –, {—‡}‡œ�

, {T‡}‡œ�

, “Í where � is a finite set
of actions, Q is a finite set of states, – : Q æ [0, 1] is a probability distribution over initial
states in Q, —‡ : Q æ R represents the rewards obtained by taking action ‡ from every state
in Q, T‡ : Q ◊ Q æ [0, 1] is the transition kernel between states for action ‡ (i.e. T‡(q, qÕ)
is the probability of transitioning to qÕ given that action ‡ is taken in q), and 0 < “ < 1 is
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a discount factor. The value VU (x) of an infinite sequence of actions x œ �Œ in U is the
expected discounted cumulative reward collected by executing the actions in x in U starting
from a state drawn from –. This can be obtained as follows:

VU (x) =
Œÿ

t=1

“t≠1–€TxÆt≠1—xt , (7)

where Ty = Ty1 · · · Tyt for any finite string y = y
1

· · · yt and T‘ = I. The following undecid-
ability result was proved by Madani et al. in [27].

I Theorem 18 (Theorem 4.4 in [27]). The following problem is undecidable: given a UMDP
U and a threshold ‹ decide whether there exists a sequence of actions x œ �Œ such that
VU (x) > ‹.

Given a UMDP U = È�, Q, –, {—‡}‡œ�

, {T‡}‡œ�

, “Í, we say that U has action-independent
rewards if —‡ = — for all ‡ œ �. We say that U has non-negative rewards if —‡(q) Ø 0
for all q œ Q and ‡ œ �. A careful inspection of the proof in [27] reveals that in fact the
reduction provided in the paper always produces as output a UMDP with non-negative
action-independent rewards. Thus, we have the following corollary, which forms the basis of
our reduction showing that s“ is not computable.

I Corollary 19. The problem in Theorem 18 remains undecidable when restricted to UMDP
with non-negative action-independent rewards.

I Theorem 20. The following problem is undecidable: given a weighted automaton A =
È�, V, –, —, {·‡}‡œ�

Í, a discount factor “ < 1/fl(A), and a threshold ‹ > 0, decide whether
sA,“(–) > ‹.

Proof. Let U = È�, Q, –, —, {T‡}‡œ�

, “Í be a UMDP with non-negative action-independent
rewards. With each UMDP of this form we associate the weighted automaton A =
È�,RQ, –, —, {·‡}‡œ�

Í. Here we assume that the linear form — : RQ æ R is given by
—(v) = v€—, and that the linear operators ·‡ : RQ æ RQ are given by ·‡(v) = v€T‡.

Note that the matrices T‡ are row-stochastic and therefore we have fl(A) Æ max‡ Î·‡ÎŒ =
1. Thus, the discount factor in U satisfies “ < 1 Æ 1/fl(A) and the bisimulation seminorm
sA,“ associate with A is defined. Using that U has non-negative action-independent rewards
we can write for any x œ �Œ:

VU (x) =
Œÿ

t=1

“t≠1–€TxÆt≠1— =
Œÿ

t=0

“t–€TxÆt
— =

Œÿ

t=0

“t|–€TxÆt
—| =

Œÿ

t=0

“t|—(·xÆt(–))| .

Therefore we have the relation sA,“(–) = supxœ�

Œ VU (x) between the bisimulation seminorm
of A and the value of U . Since deciding whether VU (x) > ‹ for some x œ �Œ is undecidable,
the theorem follows. J

6 Application: Spectral Learning for WFA

An important problem in machine learning is that of finding a weighted automaton Â
approximating an unknown automaton A given only access to data generated by A. A variety
of algorithms in di�erent learning frameworks have been considered in the literature; see [5]
for an introductory survey. In most learning scenarios it is impossible to exactly recover
the target automaton A from a finite amount of data. In that case one aims for algorithms
with formal guarantees of the form “the output Â automaton gets closer to A as the amount
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of training data grows”. To prove such a result one obviously needs a way to measure the
distance between two WFA. In this section we show how our “-bisimulation pseudometric
can be used to provide formal learning guarantees for a family of learning algorithms widely
referred to as spectral learning. We also briefly discuss the case for behavioural metrics in
automata learning problems and compare our metric to other metrics used in the spectral
learning literature.

Generally speaking, spectral learning algorithms for WFA work in two phases: the first
phase uses the data obtained from the target automaton A to estimate a finite sub-block of
the Hankel matrix of fA; the second phase computes the singular value decomposition of
this Hankel matrix and uses the corresponding singular vectors to solve a set of systems of
linear equations yielding the weights of the output WFA Â. The Hankel matrix of a function
f : �ı æ R is an infinite matrix Hf œ R�

ı◊�

ı with entries given by Hf (x, y) = f(xy), where
xy denotes the string obtained by concatenating the prefix x with the su�x y. Spectral
learning algorithms work with a finite sub-block H œ RP ◊S of this Hankel matrix indexed
by a set of prefixes P µ �ı and a set of su�xes S µ �ı. The pair B = (P, S) is usually
an input to the algorithm, in which case formal learning guarantees can be provided under
the assumption that B is complete for HfA . This assumption essentially states that the
sub-block of HfA indexed by B contains enough information to recover a WFA equivalent to
A, and is composed of a syntactic condition ensuring B contains a set of prefixes and their
extensions by any symbol in �, and an algebraic condition ensuring the rank of the Hankel
sub-matrix indexed by B has the same rank as the full Hankel matrix HfA . We refer the
reader to [5, 3] for further details about the spectral learning algorithm and a discussion of
the completeness property for B. In the sequel we focus on the analysis of the error in the
output of the spectral learning algorithm, and show how to provide learning guarantees in
terms of our distance d“ .

The following lemma encapsulates the first step of the analysis of spectral learning
algorithms. It shows how the error between the operators of A and Â depends on the error
between the true and the approximated Hankel matrix as measured by the standard operator
¸

2

-norm.

I Lemma 21. Let A = È�, V, –, —, {·‡}‡œ�

Í be a WFA and let H be a finite sub-block of the
Hankel matrix HfA indexed by B = (P, S). Suppose Â = È�, V, –̂, —̂, {·̂‡}‡œ�

Í is the WFA
returned by the spectral learning algorithm using an estimation Ĥ of H. Let Î · Î be any norm
on V . If B is complete, then we have Î– ≠ –̂Î, Î— ≠ —̂Îú, max‡œ�

Î·‡ ≠ ·̂‡Î Æ O(ÎH ≠ ĤÎ
2

)
as ÎH ≠ ĤÎ

2

æ 0. Furthermore, the constants hidden in the big-O notation only depend on
the norm Î · Î, the Hankel sub-block indices B = (P, S), and the size of the alphabet |�|.

Proof. Combine Lemma 9.3.5 and Lemma 6.3.2 from [2]. J

The results from [2] also provide explicit expressions for the constants hidden in the big-O
notation. Concentration of measure for random matrices can be used to show that as the
amount of training data increases then the distance between H and Ĥ converges to zero
with high probability (see e.g. [13]). Thus, Lemma 21 implies that as more training data
becomes available, spectral learning will output a WFA Â converging to A.

The last step in the analysis involves showing that as the weights of Â get closer to the
weights of A, the behaviour of the two automata also gets closer. Invoking the parameter
continuity of d“ (Theorem 14) one readily sees that d“(A, Â) æ 0 as ÎH ≠ ĤÎ

2

æ 0.
This provides a proof of consistency of spectral learning with respect to the “-bisimulation
pseudometric. However, machine learning applications often require more precise information
about the convergence rate of d“(A, Â) in order to, for example, compute the amount of data
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required to achieve a certain error. The following result provides such rate of convergence in
the case where the target automaton is irreducible.

I Theorem 22. Let A = È�, V, –, —, {·‡}‡œ�

Í be an irreducible WFA and let H be a finite
sub-block of the Hankel matrix HfA indexed by B = (P, S). Suppose Â = È�, V, –̂, —̂, {·̂‡}‡œ�

Í
is the WFA returned by the spectral learning algorithm using an estimation Ĥ of H. Suppose
B is complete. Then for any “ < 1/fl(A) we have d“(A, Â) Æ O(ÎH ≠ĤÎ

2

) as ÎH ≠ĤÎ
2

æ 0.
Furthermore, the hidden constants in the big-O notation only depend on A, “, the Hankel
block indices B = (P, S), and the size of the alphabet |�|.

The local Lipschitz continuity of fl around irreducible sets of matrices plays an important
role in the proof of this result (see the appendix [4]). Nonetheless, the irreducibility constraint
is not a stringent one since the sets of irreducible matrices are known to be dense among
compact sets of matrices with respect to the Hausdor� metric.

We conclude this section by comparing Theorem 22 with analyses of spectral learning
based on other error measures. We start by noting that all finite-sample analyses of spectral
learning for WFA we are aware of in the literature provide error bounds in terms of some finite
variant of the ¸

1

distance. In particular, the analyses in [23, 31] bound
q

xœ�

t |fA(x)≠f
ˆA(x)|

for a fixed t Ø 0, while the analyses in [1, 2, 21] extend the bounds to
q

xœ�

Æt |fA(x)≠f
ˆA(x)|

for a fixed t Ø 0. This approach poses several drawbacks, including:
1. Finite ¸

1

-norms provide a pseudo-metric between WFA whose kernel includes pairs of
non-equivalent WFA.

2. The number of samples required to achieve a certain error increase with the horizon t,
meaning that more data is required to get the same error on longer strings, and that
existing bounds become vacuous in the case t æ Œ.

In contrast, our result in terms of d“ establishes a bound on the discrepancy between A and
Â on strings of arbitrary length and will never assign zero distance to a pair of automata
realizing di�erent functions. Furthermore, our bisimulation metric still makes sense outside
the setting of spectral learning of probabilistic automata where most of the techniques
mentioned above have been developed.

7 Conclusion

The metric developed in this paper was very much motivated and informed by spectral ideas.
Not surprisingly it was well suited for analyzing spectral learning algorithms for weighted
automata. Two obvious directions for future work are:
1. Approximation algorithms for the bisimulation metric.
2. Exploring the relation to approximate minimization.
Both of these are well underway. It seems that some recent ideas from non-linear optimization
are very useful in developing approximation algorithms and we hope to be able to report our
results soon. Exploring the relation to approximate minimization is less further along, but
the spectral ideas at the heart of the approximate minimization algorithm in [6] should be
well adapted to the techniques of the present paper.
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