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Contributions

1 The construction of bisimulation seminorms and the associated
pseudometrics on WFA. We exhibit them in closed-form.

2 We obtain metrics on the space of weighted languages from the
metrics on WFA.

3 We show two continuity properties of the metric; one using definitions
due to Jaeger et al. and the other developed here.

4 We show undecidability results for computing our metrics.

5 Nevertheless, we show that one can successfully exploit these metrics
for applications in spectral learning.

6 Bisimulation for pseudometrics were first defined for LMPs in 1999 by
Desharnais, Gupta, Jagadeesan and Panangaden and have been
studied and developed for other models since then.
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Weighted Finite Automata

Definition

A weighted finite automaton (WFA) is a tuple A = 〈Σ,V , α, β, {τσ}σ∈Σ〉
where

Σ is a finite alphabet,

V is a finite-dimensional vector space,

α ∈ V is a vector representing the initial weights,

β ∈ V ∗ is a linear form representing the final weights,

τσ : V → V is a linear map representing the transition indexed by
σ ∈ Σ.

Given a word x = x1 . . . xn ∈ Σ∗, the automaton A realizes the function
fA : Σ? → R defined by

fA(x) = β(τxn(. . . τx1(α))) = β(τx(α)) .
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Weighted Finite Automata

q1

−5

q2

2

q3

5

q4

2

q5

1

a:2, b:1 a: 2
3 , b: 2

3

a: 1
2 , b:-1

a:1, b:5

a: 2
3 , b: 2

3

a:-2, b:2

a:4, b:-1

Figure 1: An example of a WFA where V = R5 (with the standard basis) and
Σ = {a, b}. The final weights of the states are in the lower half of the circles and
the initial weights are omitted.
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Bisimulation (Boreale)

Definition

A linear bisimulation for a weighted automaton A = 〈Σ,V , α, β, {τσ}σ∈Σ〉
on a vector space V is a linear subspace W ⊆ V satisfying:

1 W ⊆ ker(β), and

2 τσ(W ) ⊆W for all σ ∈ Σ.

Two states u, v ∈ V are called W -bisimilar if u − v ∈W . This is denoted
u ∼W v
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Bisimulation

Definition

For a given automaton A, two states u, v ∈ V are called A-bisimilar if
there exists a linear bisimulation W ⊆ V such that u − v ∈W .

Theorem (Boreale)

For every WFA A there exists a largest linear bisimulation WA for A such
that ∼A≡∼WA .

We want a quantitative analogue of this relation.
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Bisimulation
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Figure 2: Here a linear bisimulation would be W = {(0 λ 0 − λ 0)T : λ ∈ R}.
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Framework

S : set of all seminorms on V .

WFA A with

γ > 0 and ρ(A)γ < 1

FA,γ : S → S
FA,γ (s)(v) = |β(v)|+γmax

σ∈Σ
s(τσ(v))

FA,γ is contractive.

Unique fixed-
point sA,γ .

BFPT

in closed form!ker(sA,γ) = ker(∼A)

ρ(A) : joint spectral radius of the transition maps {τσ}σ∈Σ.
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Bisimulation Pseudometric Between WFA

Definition (Difference automaton)

Let A1 and A2 be two weighted automata over the same finite alphabet
Σ. Define their difference automaton as
A = A1 −A2 = 〈Σ,V , α, β, {τσ}σ∈Σ〉 where V = V1 ⊕ V2,
α = α1 ⊕ (−α2), β = β1 ⊕ β2, and τσ = τ1,σ ⊕ τ2,σ for all σ ∈ Σ.

Definition

Let A1 and A2 be two weighted automata and let A be their difference
automaton. For any γ < 1/ρ(A) we define the γ-bisimulation distance
between A1 and A2 as dγ(A1,A2) = sA,γ(α).
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Bisimulation Pseudometric Between WFA

Proposition

Let A1 and A2 two weighted automata and γ < 1/max{ρ(A1), ρ(A2)}.
Then dγ(A1,A2) satisfies dγ(A1,A2) = 0 if and only if fA1 = fA2 .
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Continuity Properties

“Sanity check” for our bisimulation pseudometric.

If we define a sequence of automata (Ai ) that converges to an
automaton A, we want their distance to converge to zero.

(Parameter Continuity)

An upper bound on the behavioural distance between two systems
should imply an upper bound on the difference of their outputs as a
function of the length of the input string. (Input Continuity)

Inspired by the continuity properties for labelled Markov chains
presented by Jaeger et. al (2014).
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Parameter Continuity

Definition

Let (Ai )i∈N be a sequence of WFA Ai = 〈Σ,V , αi , βi , {τi ,σ}σ∈Σ〉 over the
same alphabet Σ and normed vector space (V , ‖·‖). We say that the
sequence (Ai ) converges to A = 〈Σ,V , α, β, {τσ}σ∈Σ〉 if

limi→∞ ‖αi − α‖ = 0,

limi→∞ ‖βi − β‖∗ = 0,

limi→∞ ‖τi ,σ − τσ‖op = 0 for all σ ∈ Σ.

Definition

A pseudometric d between weighted automata is parameter continuous if
for any sequence (Ai )i∈N converging to some weighted automaton A,
limi→∞ d(A,Ai ) = 0.
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Parameter Continuity

Theorem

The γ-bisimulation distance between weighted automata is parameter
continuous for any sequence of weighted automata (Ai )i∈N converging to
a weighted automaton A with γ < 1/ρ(A).
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Computing the Pseudometric

Closed form expression for the seminorm:

sA,γ(v) = sup
x∈Σ∞

∞∑
t=0

γt |β(τx≤t
(v))| = sup

x∈Σ∞

∞∑
t=0

γt |fAv (x≤t)| ,

and for the pseudometric:

dγ(A1,A2) = sup
x∈Σ∞

∞∑
t=0

γt |fA1(x≤t)− fA2(x≤t)| .

Supremum over all infinite strings and absolute value: looks hard to
compute.
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Undecidability Result

Theorem

The following problem is undecidable: given a weighted automaton
A = 〈Σ,V , α, β, {τσ}σ∈Σ〉, a discount factor γ < 1/ρ(A), and a threshold
ν > 0, decide whether sA,γ(α) > ν.

Proof idea: Reduction from computing the value function of unobservable
MDPs (special cases of POMDPs) in a discounted infinite-horizon setting.
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Spectral Learning Applications

Despite the undecidability result, it is possible to bound the error of
some algorithms in terms of the pseudometric to analyse their output.

The spectral learning algorithm from [Balle et al. 2014] PAC-learns
WFA in terms of the pseudometric.

With poly(1/ε) samples gives a hypothesis with error < ε measured
with dγ .
Previous results all use `1 distance on strings of bounded length, which
is weaker.
Proof idea: we combine continuity properties of pseudometric and
continuity properties of joint spectral radius – this involves some
delicate technical bounds.
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Proof idea: we combine continuity properties of pseudometric and
continuity properties of joint spectral radius – this involves some
delicate technical bounds.
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Conclusion

We constructed bisimulation pseudometrics between WFA and
metrics between weighted languages.

Satisfies parameter continuity and input continuity properties (under
certain assumptions).

Applications to spectral learning.

Future work: develop an algorithm to approximately compute the
bisimulation pseudometrics.

Will most likely rely on the sum-of-squares programming approximation
algorithm to compute the JSR of a set of matrices.
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Thank you!
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Appendix – Joint Spectral Radius

Definition

The joint spectral radius of a collection M = {τi}i∈I of linear maps
τi : V → V on a normed vector space (V , ‖·‖) is defined as

ρ(M) = lim sup
t→∞

(
sup
T∈I t

∥∥∥∥∥∏
i∈T

τi

∥∥∥∥∥
)1/t

= lim
t→∞

(
sup
T∈I t

∥∥∥∥∥∏
i∈T

τi

∥∥∥∥∥
)1/t

.

The joint spectral radius of A, denoted as ρ(A) is defined as ρ({τσ}σ∈Σ)
and can be rewritten as:

ρ(A) = lim
t→∞

(
sup
x∈Σt
‖τx‖

)1/t

.
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Appendix – Metric for Banach’s Fixed-Point Theorem

We define the following metric d on S :

d(s, s ′) = sup
‖v‖≤1

|s(v)− s ′(v)| ,

where ‖·‖ is the following norm:

Theorem (Rota 1960)

Let M = {τi}i∈I be a compact set of linear maps on V . For any η > 0
there exists a norm ‖·‖ on V that satisfies ‖τi (v)‖ ≤ (ρ(M) + η) ‖v‖ for
every i ∈ I and every v ∈ V .
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Appendix – Closed form

Let A = 〈Σ,V , α, β, {τσ}σ∈Σ〉.
γ < 1/ρ(A).

FA,γ(s)(v) = |β(v)|+ γmax
σ∈Σ

s(τσ(v)) .

Theorem

FA,γ has a unique fixed point.

Theorem

Let sA,γ ∈ S be the fixed point of FA,γ . Then for any v ∈ V we have

sA,γ(v) = sup
x∈Σ∞

∞∑
t=0

γt |β(τx≤t
(v))| = sup

x∈Σ∞

∞∑
t=0

γt |fAv (x≤t)| .
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Appendix – Reduction details

Theorem (Theorem 4.4 in Madani03)

The following problem is undecidable: given a UMDP U and a threshold ν
decide whether there exists a sequence of actions x ∈ Σ∞ such that
VU (x) > ν.

The UMDP U = 〈Σ,Q, α, {βσ}σ∈Σ, {Tσ}σ∈Σ〉 constructed in the proof
always has:

1 action-independent rewards: βσ = β for all σ ∈ Σ,

2 non-negative rewards: βσ(q) ≥ 0 for all q ∈ Q and σ ∈ Σ.

Corollary

The problem in the previous theorem remains undecidable when restricted
to UMDP with non-negative action-independent rewards.
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