Bisimulation Metrics for Weighted Automata

B. Balle^{1,*}, *P. Gourdeau*² and P. Panangaden²

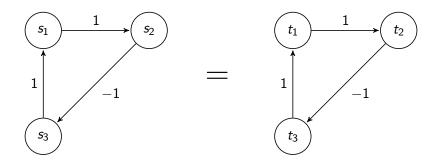
¹Amazon, Cambridge (UK)

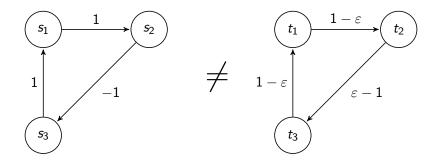
*(work done while at Lancaster University)

²McGill University, Montreal (Canada)

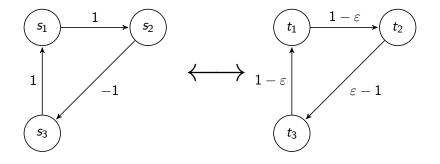
ICALP 2017

Motivation





Motivation



• The construction of bisimulation seminorms and the associated pseudometrics on WFA. We exhibit them in closed-form.

- The construction of bisimulation seminorms and the associated pseudometrics on WFA. We exhibit them in closed-form.
- We obtain metrics on the space of weighted languages from the metrics on WFA.

- The construction of bisimulation seminorms and the associated pseudometrics on WFA. We exhibit them in closed-form.
- We obtain metrics on the space of weighted languages from the metrics on WFA.
- We show two continuity properties of the metric; one using definitions due to Jaeger et al. and the other developed here.

- The construction of bisimulation seminorms and the associated pseudometrics on WFA. We exhibit them in closed-form.
- We obtain metrics on the space of weighted languages from the metrics on WFA.
- We show two continuity properties of the metric; one using definitions due to Jaeger et al. and the other developed here.
- We show undecidability results for computing our metrics.

- The construction of bisimulation seminorms and the associated pseudometrics on WFA. We exhibit them in closed-form.
- We obtain metrics on the space of weighted languages from the metrics on WFA.
- We show two continuity properties of the metric; one using definitions due to Jaeger et al. and the other developed here.
- We show undecidability results for computing our metrics.
- Nevertheless, we show that one can successfully exploit these metrics for applications in spectral learning.

- The construction of bisimulation seminorms and the associated pseudometrics on WFA. We exhibit them in closed-form.
- We obtain metrics on the space of weighted languages from the metrics on WFA.
- We show two continuity properties of the metric; one using definitions due to Jaeger et al. and the other developed here.
- We show undecidability results for computing our metrics.
- Nevertheless, we show that one can successfully exploit these metrics for applications in spectral learning.
- Bisimulation for pseudometrics were first defined for LMPs in 1999 by Desharnais, Gupta, Jagadeesan and Panangaden and have been studied and developed for other models since then.

Definition

A weighted finite automaton (WFA) is a tuple $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$ where

Definition

A weighted finite automaton (WFA) is a tuple $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$ where

- Σ is a finite alphabet,
- V is a finite-dimensional vector space,
- $\alpha \in V$ is a vector representing the initial weights,
- $\beta \in V^*$ is a linear form representing the final weights,
- $\tau_{\sigma}: V \to V$ is a linear map representing the transition indexed by $\sigma \in \Sigma$.

Definition

A weighted finite automaton (WFA) is a tuple $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$ where

- Σ is a finite alphabet,
- V is a finite-dimensional vector space,
- $\alpha \in V$ is a vector representing the initial weights,
- $\beta \in V^*$ is a linear form representing the final weights,
- $\tau_{\sigma}: V \to V$ is a linear map representing the transition indexed by $\sigma \in \Sigma$.

Given a word $x = x_1 \dots x_n \in \Sigma^*$, the automaton \mathcal{A} realizes the function $f_{\mathcal{A}} : \Sigma^* \to \mathbb{R}$ defined by

$$f_{\mathcal{A}}(x) = \beta(\tau_{x_n}(\ldots \tau_{x_1}(\alpha))) = \beta(\tau_x(\alpha))$$
.

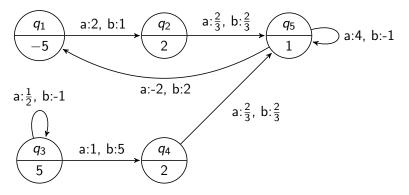


Figure 1: An example of a WFA where $V = \mathbb{R}^5$ (with the standard basis) and $\Sigma = \{a, b\}$. The final weights of the states are in the lower half of the circles and the initial weights are omitted.

A linear bisimulation for a weighted automaton $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$ on a vector space V is a linear subspace $W \subseteq V$ satisfying:

A linear bisimulation for a weighted automaton $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$ on a vector space V is a linear subspace $W \subseteq V$ satisfying:

- $W \subseteq \ker(\beta)$, and
- **2** $\tau_{\sigma}(W) \subseteq W$ for all $\sigma \in \Sigma$.

A linear bisimulation for a weighted automaton $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$ on a vector space V is a linear subspace $W \subseteq V$ satisfying:

• $W \subseteq \ker(\beta)$, and

2
$$\tau_{\sigma}(W) \subseteq W$$
 for all $\sigma \in \Sigma$.

Two states $u, v \in V$ are called *W*-bisimilar if $u - v \in W$. This is denoted $u \sim_W v$

For a given automaton A, two states $u, v \in V$ are called A-bisimilar if there exists a linear bisimulation $W \subseteq V$ such that $u - v \in W$.

For a given automaton A, two states $u, v \in V$ are called A-bisimilar if there exists a linear bisimulation $W \subseteq V$ such that $u - v \in W$.

Theorem (Boreale)

For every WFA A there exists a largest linear bisimulation W_A for A such that $\sim_A \equiv \sim_{W_A}$.

For a given automaton A, two states $u, v \in V$ are called A-bisimilar if there exists a linear bisimulation $W \subseteq V$ such that $u - v \in W$.

Theorem (Boreale)

For every WFA A there exists a largest linear bisimulation W_A for A such that $\sim_A \equiv \sim_{W_A}$.

We want a *quantitative analogue* of this relation.

Bisimulation

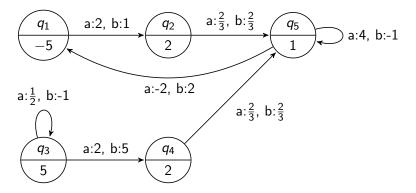


Figure 2: Here a linear bisimulation would be $W = \{(0 \ \lambda \ 0 \ -\lambda \ 0)^T : \lambda \in \mathbb{R}\}.$

S: set of all seminorms on V.

S: set of all seminorms on V.

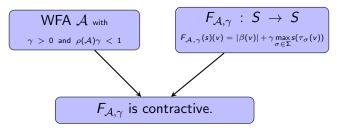
$$F_{\mathcal{A},\gamma} : S \to S$$

$$F_{\mathcal{A},\gamma}(s)(v) = |\beta(v)| + \gamma \max_{\sigma \in \Sigma} s(\tau_{\sigma}(v))$$

 $\rho(\mathcal{A})$: joint spectral radius of the transition maps $\{\tau_{\sigma}\}_{\sigma\in\Sigma}$.

Balle, Gourdeau, Panangaden

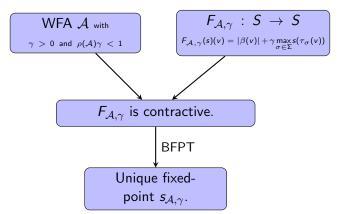
S: set of all seminorms on V.



 $\rho(\mathcal{A})$: joint spectral radius of the transition maps $\{\tau_{\sigma}\}_{\sigma\in\Sigma}$.

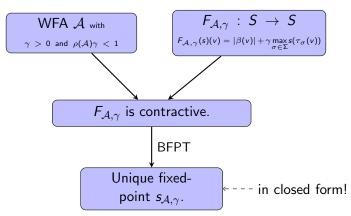
Balle, Gourdeau, Panangaden

S: set of all seminorms on V.



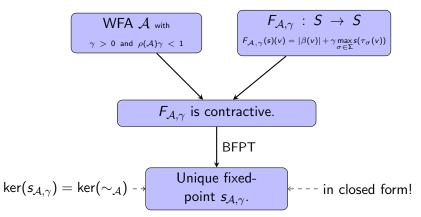
 $\rho(\mathcal{A})$: joint spectral radius of the transition maps $\{\tau_{\sigma}\}_{\sigma\in\Sigma}$.

S: set of all seminorms on V.



 $\rho(\mathcal{A})$: joint spectral radius of the transition maps $\{\tau_{\sigma}\}_{\sigma\in\Sigma}$.

S: set of all seminorms on V.



 $\rho(\mathcal{A})$: joint spectral radius of the transition maps $\{\tau_{\sigma}\}_{\sigma\in\Sigma}$.

Definition (Difference automaton)

Let \mathcal{A}_1 and \mathcal{A}_2 be two weighted automata over the same finite alphabet Σ . Define their *difference automaton* as $\mathcal{A} = \mathcal{A}_1 - \mathcal{A}_2 = \langle \Sigma, V, \alpha, \beta, \{\tau_\sigma\}_{\sigma \in \Sigma} \rangle$ where $V = V_1 \oplus V_2$, $\alpha = \alpha_1 \oplus (-\alpha_2), \ \beta = \beta_1 \oplus \beta_2$, and $\tau_\sigma = \tau_{1,\sigma} \oplus \tau_{2,\sigma}$ for all $\sigma \in \Sigma$.

Definition (Difference automaton)

Let \mathcal{A}_1 and \mathcal{A}_2 be two weighted automata over the same finite alphabet Σ . Define their *difference automaton* as $\mathcal{A} = \mathcal{A}_1 - \mathcal{A}_2 = \langle \Sigma, V, \alpha, \beta, \{\tau_\sigma\}_{\sigma \in \Sigma} \rangle$ where $V = V_1 \oplus V_2$, $\alpha = \alpha_1 \oplus (-\alpha_2), \ \beta = \beta_1 \oplus \beta_2$, and $\tau_\sigma = \tau_{1,\sigma} \oplus \tau_{2,\sigma}$ for all $\sigma \in \Sigma$.

Definition

Let \mathcal{A}_1 and \mathcal{A}_2 be two weighted automata and let \mathcal{A} be their difference automaton. For any $\gamma < 1/\rho(\mathcal{A})$ we define the γ -bisimulation distance between \mathcal{A}_1 and \mathcal{A}_2 as $d_{\gamma}(\mathcal{A}_1, \mathcal{A}_2) = s_{\mathcal{A},\gamma}(\alpha)$.

Bisimulation Pseudometric Between WFA

Proposition

Let A_1 and A_2 two weighted automata and $\gamma < 1/\max\{\rho(A_1), \rho(A_2)\}$. Then $d_{\gamma}(A_1, A_2)$ satisfies $d_{\gamma}(A_1, A_2) = 0$ if and only if $f_{A_1} = f_{A_2}$. • "Sanity check" for our bisimulation pseudometric.

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.
 (Parameter Continuity)

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.
 (Parameter Continuity)
- An upper bound on the behavioural distance between two systems should imply an upper bound on the difference of their outputs as a function of the length of the input string.

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.
 (Parameter Continuity)
- An upper bound on the behavioural distance between two systems should imply an upper bound on the difference of their outputs as a function of the length of the input string.

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.
 (Parameter Continuity)
- An upper bound on the behavioural distance between two systems should imply an upper bound on the difference of their outputs as a function of the length of the input string. (Input Continuity)

- "Sanity check" for our bisimulation pseudometric.
- If we define a sequence of automata (A_i) that converges to an automaton A, we want their distance to converge to zero.
 (Parameter Continuity)
- An upper bound on the behavioural distance between two systems should imply an upper bound on the difference of their outputs as a function of the length of the input string. (Input Continuity)
- Inspired by the continuity properties for labelled Markov chains presented by Jaeger et. al (2014).

Parameter Continuity

Definition

Let $(\mathcal{A}_i)_{i\in\mathbb{N}}$ be a sequence of WFA $\mathcal{A}_i = \langle \Sigma, V, \alpha_i, \beta_i, \{\tau_{i,\sigma}\}_{\sigma\in\Sigma} \rangle$ over the same alphabet Σ and normed vector space $(V, \|\cdot\|)$. We say that the sequence (\mathcal{A}_i) converges to $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_\sigma\}_{\sigma\in\Sigma} \rangle$ if

•
$$\lim_{i\to\infty} \|\alpha_i - \alpha\| = 0$$
,

•
$$\lim_{i \to \infty} \left\| \beta_i - \beta \right\|_* = 0$$
,

•
$$\lim_{i\to\infty} \|\tau_{i,\sigma} - \tau_{\sigma}\|_{op} = 0$$
 for all $\sigma \in \Sigma$.

Parameter Continuity

Definition

Let $(\mathcal{A}_i)_{i\in\mathbb{N}}$ be a sequence of WFA $\mathcal{A}_i = \langle \Sigma, V, \alpha_i, \beta_i, \{\tau_{i,\sigma}\}_{\sigma\in\Sigma} \rangle$ over the same alphabet Σ and normed vector space $(V, \|\cdot\|)$. We say that the sequence (\mathcal{A}_i) converges to $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_\sigma\}_{\sigma\in\Sigma} \rangle$ if

•
$$\lim_{i\to\infty} \|\alpha_i - \alpha\| = 0$$
,

•
$$\lim_{i \to \infty} \left\| \beta_i - \beta \right\|_* = 0$$
,

•
$$\lim_{i\to\infty} \|\tau_{i,\sigma} - \tau_{\sigma}\|_{op} = 0$$
 for all $\sigma \in \Sigma$.

Definition

A pseudometric *d* between weighted automata is *parameter continuous* if for any sequence $(\mathcal{A}_i)_{i \in \mathbb{N}}$ converging to some weighted automaton \mathcal{A} , $\lim_{i\to\infty} d(\mathcal{A}, \mathcal{A}_i) = 0$.

Theorem

The γ -bisimulation distance between weighted automata is parameter continuous for any sequence of weighted automata $(A_i)_{i \in \mathbb{N}}$ converging to a weighted automaton A with $\gamma < 1/\rho(A)$.

Computing the Pseudometric

• Closed form expression for the seminorm:

$$s_{\mathcal{A},\gamma}(v) = \sup_{x \in \Sigma^{\infty}} \sum_{t=0}^{\infty} \gamma^t |\beta(\tau_{x_{\leq t}}(v))| = \sup_{x \in \Sigma^{\infty}} \sum_{t=0}^{\infty} \gamma^t |f_{\mathcal{A}_v}(x_{\leq t})| ,$$

and for the pseudometric:

$$d_{\gamma}(\mathcal{A}_1, \mathcal{A}_2) = \sup_{x \in \Sigma^{\infty}} \sum_{t=0}^{\infty} \gamma^t \left| f_{\mathcal{A}_1}(x_{\leq t}) - f_{\mathcal{A}_2}(x_{\leq t}) \right| .$$

• Closed form expression for the seminorm:

$$s_{\mathcal{A},\gamma}(v) = \sup_{x \in \Sigma^{\infty}} \sum_{t=0}^{\infty} \gamma^t |\beta(\tau_{x_{\leq t}}(v))| = \sup_{x \in \Sigma^{\infty}} \sum_{t=0}^{\infty} \gamma^t |f_{\mathcal{A}_v}(x_{\leq t})| ,$$

and for the pseudometric:

$$d_{\gamma}(\mathcal{A}_1, \mathcal{A}_2) = \sup_{x \in \Sigma^{\infty}} \sum_{t=0}^{\infty} \gamma^t |f_{\mathcal{A}_1}(x_{\leq t}) - f_{\mathcal{A}_2}(x_{\leq t})|$$

• Supremum over all infinite strings and absolute value: looks hard to compute.

Theorem

The following problem is undecidable: given a weighted automaton $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$, a discount factor $\gamma < 1/\rho(\mathcal{A})$, and a threshold $\nu > 0$, decide whether $s_{\mathcal{A},\gamma}(\alpha) > \nu$.

Theorem

The following problem is undecidable: given a weighted automaton $\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$, a discount factor $\gamma < 1/\rho(\mathcal{A})$, and a threshold $\nu > 0$, decide whether $s_{\mathcal{A},\gamma}(\alpha) > \nu$.

Proof idea: Reduction from computing the value function of unobservable MDPs (special cases of POMDPs) in a discounted infinite-horizon setting.

• Despite the undecidability result, it is possible to bound the error of some algorithms in terms of the pseudometric to analyse their output.

- Despite the undecidability result, it is possible to bound the error of some algorithms in terms of the pseudometric to analyse their output.
- The spectral learning algorithm from [Balle et al. 2014] PAC-learns WFA in terms of the pseudometric.

- Despite the undecidability result, it is possible to bound the error of some algorithms in terms of the pseudometric to analyse their output.
- The spectral learning algorithm from [Balle et al. 2014] PAC-learns WFA in terms of the pseudometric.
 - With poly(1/ ϵ) samples gives a hypothesis with error $< \epsilon$ measured with d_{γ} .

- Despite the undecidability result, it is possible to bound the error of some algorithms in terms of the pseudometric to analyse their output.
- The spectral learning algorithm from [Balle et al. 2014] PAC-learns WFA in terms of the pseudometric.
 - With poly(1/ ϵ) samples gives a hypothesis with error $< \epsilon$ measured with d_{γ} .
 - \bullet Previous results all use ℓ_1 distance on strings of bounded length, which is weaker.

- Despite the undecidability result, it is possible to bound the error of some algorithms in terms of the pseudometric to analyse their output.
- The spectral learning algorithm from [Balle et al. 2014] PAC-learns WFA in terms of the pseudometric.
 - With poly(1/ ϵ) samples gives a hypothesis with error $< \epsilon$ measured with d_{γ} .
 - Previous results all use ℓ_1 distance on strings of bounded length, which is weaker.
 - Proof idea: we combine continuity properties of pseudometric and continuity properties of joint spectral radius this involves some delicate technical bounds.

• We constructed bisimulation pseudometrics between WFA and metrics between weighted languages.

- We constructed bisimulation pseudometrics between WFA and metrics between weighted languages.
- Satisfies parameter continuity and input continuity properties (under certain assumptions).

- We constructed bisimulation pseudometrics between WFA and metrics between weighted languages.
- Satisfies parameter continuity and input continuity properties (under certain assumptions).
- Applications to spectral learning.

- We constructed bisimulation pseudometrics between WFA and metrics between weighted languages.
- Satisfies parameter continuity and input continuity properties (under certain assumptions).
- Applications to spectral learning.
- Future work: develop an algorithm to approximately compute the bisimulation pseudometrics.

- We constructed bisimulation pseudometrics between WFA and metrics between weighted languages.
- Satisfies parameter continuity and input continuity properties (under certain assumptions).
- Applications to spectral learning.
- Future work: develop an algorithm to approximately compute the bisimulation pseudometrics.
 - Will most likely rely on the sum-of-squares programming approximation algorithm to compute the JSR of a set of matrices.

Thank you!

Appendix – Joint Spectral Radius

Definition

The *joint spectral radius* of a collection $M = {\tau_i}_{i \in I}$ of linear maps $\tau_i : V \to V$ on a normed vector space $(V, \|\cdot\|)$ is defined as

$$\rho(M) = \limsup_{t \to \infty} \left(\sup_{T \in I^t} \left\| \prod_{i \in T} \tau_i \right\| \right)^{1/t} = \lim_{t \to \infty} \left(\sup_{T \in I^t} \left\| \prod_{i \in T} \tau_i \right\| \right)^{1/t}$$

.

Appendix – Joint Spectral Radius

Definition

The *joint spectral radius* of a collection $M = {\tau_i}_{i \in I}$ of linear maps $\tau_i : V \to V$ on a normed vector space $(V, \|\cdot\|)$ is defined as

$$\rho(M) = \limsup_{t \to \infty} \left(\sup_{T \in I^t} \left\| \prod_{i \in T} \tau_i \right\| \right)^{1/t} = \lim_{t \to \infty} \left(\sup_{T \in I^t} \left\| \prod_{i \in T} \tau_i \right\| \right)^{1/t}$$

The joint spectral radius of A, denoted as $\rho(A)$ is defined as $\rho(\{\tau_{\sigma}\}_{\sigma \in \Sigma})$ and can be rewritten as:

$$ho(\mathcal{A}) = \lim_{t o \infty} \left(\sup_{\mathbf{x} \in \mathbf{\Sigma}^t} \| au_{\mathbf{x}} \|
ight)^{1/t}$$

.

We define the following metric d on S:

$$d(s,s') = \sup_{\|v\| \le 1} |s(v) - s'(v)|$$
,

where $\|\cdot\|$ is the following norm:

Theorem (Rota 1960)

Let $M = {\tau_i}_{i \in I}$ be a compact set of linear maps on V. For any $\eta > 0$ there exists a norm $\|\cdot\|$ on V that satisfies $\|\tau_i(v)\| \le (\rho(M) + \eta) \|v\|$ for every $i \in I$ and every $v \in V$.

Appendix - Closed form

• Let
$$\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$$
.

• $\gamma < 1/\rho(\mathcal{A}).$

•
$$F_{\mathcal{A},\gamma}(s)(v) = |\beta(v)| + \gamma \max_{\sigma \in \Sigma} s(\tau_{\sigma}(v))$$
.

Appendix - Closed form

• Let
$$\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$$
.

• $\gamma < 1/\rho(\mathcal{A}).$

•
$$F_{\mathcal{A},\gamma}(s)(v) = |\beta(v)| + \gamma \max_{\sigma \in \Sigma} s(\tau_{\sigma}(v))$$
.

Theorem

 $F_{\mathcal{A},\gamma}$ has a unique fixed point.

Appendix - Closed form

• Let
$$\mathcal{A} = \langle \Sigma, V, \alpha, \beta, \{\tau_{\sigma}\}_{\sigma \in \Sigma} \rangle$$
.

• $\gamma < 1/\rho(\mathcal{A}).$

•
$$F_{\mathcal{A},\gamma}(s)(v) = |\beta(v)| + \gamma \max_{\sigma \in \Sigma} s(\tau_{\sigma}(v))$$
.

Theorem

$$F_{\mathcal{A},\gamma}$$
 has a unique fixed point.

Theorem

Let $s_{\mathcal{A},\gamma} \in \mathcal{S}$ be the fixed point of $F_{\mathcal{A},\gamma}$. Then for any $v \in V$ we have

$$s_{\mathcal{A},\gamma}(v) = \sup_{x\in\Sigma^{\infty}}\sum_{t=0}^{\infty}\gamma^t |\beta(\tau_{x\leq t}(v))| = \sup_{x\in\Sigma^{\infty}}\sum_{t=0}^{\infty}\gamma^t |f_{\mathcal{A}_v}(x\leq t)|$$
.

The following problem is undecidable: given a UMDP \mathcal{U} and a threshold ν decide whether there exists a sequence of actions $x \in \Sigma^{\infty}$ such that $V_{\mathcal{U}}(x) > \nu$.

The following problem is undecidable: given a UMDP \mathcal{U} and a threshold ν decide whether there exists a sequence of actions $x \in \Sigma^{\infty}$ such that $V_{\mathcal{U}}(x) > \nu$.

The UMDP $\mathcal{U} = \langle \Sigma, Q, \alpha, \{\beta_{\sigma}\}_{\sigma \in \Sigma}, \{T_{\sigma}\}_{\sigma \in \Sigma} \rangle$ constructed in the proof always has:

The following problem is undecidable: given a UMDP \mathcal{U} and a threshold ν decide whether there exists a sequence of actions $x \in \Sigma^{\infty}$ such that $V_{\mathcal{U}}(x) > \nu$.

The UMDP $\mathcal{U} = \langle \Sigma, Q, \alpha, \{\beta_{\sigma}\}_{\sigma \in \Sigma}, \{T_{\sigma}\}_{\sigma \in \Sigma} \rangle$ constructed in the proof always has:

() action-independent rewards: $\beta_{\sigma} = \beta$ for all $\sigma \in \Sigma$,

The following problem is undecidable: given a UMDP \mathcal{U} and a threshold ν decide whether there exists a sequence of actions $x \in \Sigma^{\infty}$ such that $V_{\mathcal{U}}(x) > \nu$.

The UMDP $\mathcal{U} = \langle \Sigma, Q, \alpha, \{\beta_{\sigma}\}_{\sigma \in \Sigma}, \{T_{\sigma}\}_{\sigma \in \Sigma} \rangle$ constructed in the proof always has:

- **①** action-independent rewards: $\beta_{\sigma} = \beta$ for all $\sigma \in \Sigma$,
- 2 non-negative rewards: $\beta_{\sigma}(q) \ge 0$ for all $q \in Q$ and $\sigma \in \Sigma$.

The following problem is undecidable: given a UMDP \mathcal{U} and a threshold ν decide whether there exists a sequence of actions $x \in \Sigma^{\infty}$ such that $V_{\mathcal{U}}(x) > \nu$.

The UMDP $\mathcal{U} = \langle \Sigma, Q, \alpha, \{\beta_{\sigma}\}_{\sigma \in \Sigma}, \{T_{\sigma}\}_{\sigma \in \Sigma} \rangle$ constructed in the proof always has:

- **①** action-independent rewards: $\beta_{\sigma} = \beta$ for all $\sigma \in \Sigma$,
- 2 non-negative rewards: $\beta_{\sigma}(q) \ge 0$ for all $q \in Q$ and $\sigma \in \Sigma$.

The following problem is undecidable: given a UMDP \mathcal{U} and a threshold ν decide whether there exists a sequence of actions $x \in \Sigma^{\infty}$ such that $V_{\mathcal{U}}(x) > \nu$.

The UMDP $\mathcal{U} = \langle \Sigma, Q, \alpha, \{\beta_{\sigma}\}_{\sigma \in \Sigma}, \{T_{\sigma}\}_{\sigma \in \Sigma} \rangle$ constructed in the proof always has:

- action-independent rewards: $\beta_{\sigma} = \beta$ for all $\sigma \in \Sigma$,
- 2 non-negative rewards: $\beta_{\sigma}(q) \geq 0$ for all $q \in Q$ and $\sigma \in \Sigma$.

Corollary

The problem in the previous theorem remains undecidable when restricted to UMDP with non-negative action-independent rewards.