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Question

How many data are needed for robust
learning against evasion attacks under
smooth distributions?

Problem Setting

e Binary classification
e Feature vectors (input space: X = {0,1}")

e An adversary can modify input bits after training
(evasion attacks)

For example, we wish to be able to differentiate be-
tween 0’'s and 1’s:
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The image of a 0 should not be classified as a 1 if it
is slightly perturbed by an adversary:
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Efficient Robust Learning:

We want to prove or disprove the existence of an
algorithm with polynomial sample complexity (in
the learning parameters and input dimension n) that
will output a hypothesis such that the probability of
drawing a new point that can be perturbed by an
adversary and resulting in a misclassification to be
small:
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Exact-in-the-ball Robust Risk:
Rf(h, c) = P (32 € By(x) : h(2) # c(2))

Sample Complexity Bounds for Robustly
Learning Decision Lists against Evasion Attacks

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska and James Worrell

Take Away

e Adversary’s budget is a tundamental quantity determining the sample complexity of robust learning

e We can efliciently use standard PAC algorithms as black boxes for some robust learning problems

e Our paper: decision lists under smooth distributions

Open Problem

Is a sample-efficient PAC-learning algorithm for
concept class C also a sample-efficient
log(n)-robust learning algorithm for C under the
uniform distribution?

e From previous work [1]

e Focus on the boolean hypercube {0, 1}"

e Our sample complexity upper bound for
decision lists adds to the body of positive
evidence for this problem.

Decision Lists

A decision list f € k-DL is a list of pairs
(K17 /Ul)a SRR (KT7 Ufl“))

K ;: conjunction of size at most k with literals drawn
from {x1,Z1,...,Zn, Tn}, v; € 10,1}, K, = true.
The output f(x) on x € {0,1}" is v;, where j is the
least index s.t. K; evaluates to true. Example:
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Smooth Distributions

a-Log-Lipschitz Distributions:

vy =(0,...,1,1,1,...,0) p(x1)
m— <
ro = (0,...,1,0,1,...,0) p(:L'Q)_Oé

For e.g.: uniform distribution, product distribution

where the mean of each variable is bounded, etc.

Intuition: input points that are close to each other
cannot have vastly different probability masses.

Decision List Sample Complexity

Theorem: Decision lists are efficiently
log(n)-robustly learnable under smooth distri-
butions.

e A polynomial number of examples is enough to

return a hypothesis with small robust risk (with
high probability).

A Unifying Result.
SAT ()

SAT ()

*p € k-CNF: o(x) = Nier Vi<j<k Ui

o p(n) =logn

o SAT(p)={zx e X | p(x) =1}

o [SAT(p)| < poly(e,1/n) = |SATiogn(p)| <€

Proof Idea

® Event of an exit at depths d;, dy for two k-DL =
a k-CNF formula ¢ = A, \/’]‘?:1 Zij
e Firror between the hypothesis and ground truth

® Induction on k: the log(n)-expansion of
satisfying assignments of ¢ (i.e., the robust risk)
isn’'t too large

e Unifying result above

® Controlling the standard risk == controlling
the robust risk
e The standard learning algorithm for £-DL is a robust
learner!

Monotone Conjunctions

“AND?” of boolean variables:

thesis A sleep deprivation A caffeine

Concept classes that subsume monotone conjunc-
tions:

e Decision lists

e Decision trees

e [.inear classifiers

Sample complexity lower bound for monotone con-
junctions holds for these classes as well.

Lower Bound

Theorem: Any p(n)-robust learning algorithm
for monotone conjunctions has a sample com-
plezity lower bound of Q(2°")) under the uni-
form distribution.

e Any concept class that subsumes monotone
conjunctions require a sample size for robust
learning where there is an exponential
dependence on the adversary’s budget.

Proof Idea

e Two disjoint monotone conjunctions ¢y, ¢y of
length 2p have robust risk R,(cy, c2) bounded
below by a constant

e A random sample of size m = 2(2”) won't be
able to distinguish ¢; from ¢y w.p. > 1/2
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