

DEPARTMENT OF COMPUTER SCIENCE

Question

How many data are needed for robust learning against evasion attacks under smooth distributions?

Problem Setting

- Binary classification
- Feature vectors (input space: $\mathcal{X} = \{0, 1\}^n$)
- An adversary can modify input bits after training (evasion attacks)

For example, we wish to be able to differentiate between 0's and 1's:

111111111111111

The image of a 0 should not be classified as a 1 if it is slightly perturbed by an adversary:

Efficient Robust Learning:

We want to prove or disprove the existence of an algorithm with *polynomial sample complexity* (in the learning parameters and input dimension n) that will output a hypothesis such that the probability of drawing a new point that can be perturbed by an adversary and resulting in a misclassification to be small:

Exact-in-the-ball Robust Risk: $\mathsf{R}^{E}_{\rho}(h,c) = \mathbb{P}_{x \sim D} \left(\exists z \in B_{\rho}(x) : h(z) \neq c(z) \right)$

Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska and James Worrell

Take Away

• Adversary's budget is a fundamental quantity determining the sample complexity of robust learning • We can efficiently use standard PAC algorithms as black boxes for some robust learning problems • Our paper: decision lists under smooth distributions

Open Problem

Is a sample-efficient PAC-learning algorithm for
$concept \ class \ {\cal C} \ also \ a \ sample-efficient$
$\log(n)$ -robust learning algorithm for C under the
uniform distribution?

- From previous work [1]
- Focus on the boolean hypercube $\{0,1\}^n$
- Our sample complexity upper bound for decision lists adds to the body of positive evidence for this problem.

Decision Lists

A decision list $f \in k$ -DL is a list of pairs

 $(K_1, v_1), \ldots, (K_r, v_r),$

 K_i : conjunction of size at most k with literals drawn from $\{x_1, \bar{x_1}, \ldots, x_n, \bar{x_n}\}, v_j \in \{0, 1\}, K_r = \texttt{true}.$ The output f(x) on $x \in \{0,1\}^n$ is v_j , where j is the least index s.t. K_i evaluates to **true**. Example:

> $x_3 \longrightarrow x_1 \land \bar{x_5} \longrightarrow x_2 \land \bar{x_3} \longrightarrow \mathsf{true}$ \downarrow \downarrow

Smooth Distributions

α -Log-Lipschitz Distributions:

 $\begin{array}{l} x_1 = (0, \dots, 1, 1, 1, \dots, 0) \\ x_2 = (0, \dots, 1, 0, 1, \dots, 0) \end{array} \implies \frac{p(x_1)}{p(x_2)} \le \alpha \ . \end{array}$

For e.g.: uniform distribution, product distribution where the mean of each variable is bounded, etc.

Intuition: input points that are close to each other cannot have vastly different probability masses.

Decision lists are efficiently Theorem: log(n)-robustly learnable under smooth distributions.

return a hypothesis with small robust risk (with high probability).

• A *polynomial* number of examples is enough to

• ζ

• Event of an exit at depths d_1, d_2 for two k-DL = a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$ • Error between the hypothesis and ground truth **2 Induction on** k: the $\log(n)$ -expansion of satisfying assignments of φ (i.e., the robust risk) isn't too large • Unifying result above

Decision List Sample Complexity

A Unifying Result.

•
$$\varphi \in k$$
-CNF: $\varphi(x) = \wedge_{i \in I} \vee_{1 \leq j \leq k} l_{ij}$
• $\rho(n) = \log n$
• $\operatorname{SAT}(\varphi) = \{x \in \mathcal{X} \mid \varphi(x) = 1\}$
• $|\operatorname{SAT}(\varphi)| \leq \operatorname{poly}(\varepsilon, 1/n) \implies |\operatorname{SAT}_{\log n}(\varphi)| \leq$

Proof Idea

 \bigcirc Controlling the standard risk \implies controlling the **robust** risk

• The standard learning algorithm for k-DL is a robust learner!

tions:

On the hardness of robust classification. Journal of Machine Learning Research, 22, 2021.

Monotone Conjunctions

"AND" of boolean variables:

thesis \land sleep deprivation \land caffeine

Concept classes that subsume monotone conjunc-

• Decision lists

• Decision trees

• Linear classifiers

Sample complexity lower bound for monotone conjunctions holds for these classes as well.

Lower Bound

Theorem: Any $\rho(n)$ -robust learning algorithm for monotone conjunctions has a sample complexity lower bound of $\Omega(2^{\rho(n)})$ under the uniform distribution.

• Any concept class that subsumes monotone conjunctions require a sample size for robust learning where there is an *exponential* dependence on the adversary's budget.

Proof Idea

• Two disjoint monotone conjunctions c_1, c_2 of length 2ρ have robust risk $R_{\rho}(c_1, c_2)$ bounded below by a constant

• A random sample of size $m = \Omega(2^{\rho})$ won't be able to distinguish c_1 from c_2 w.p. > 1/2

References

[1] P. Gourdeau, V. Kanade, M. Kwiatkowska, and J. Worrell.