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Question

How many data are needed for robust
learning against evasion attacks under

smooth distributions?

Problem Setting

• Binary classification
• Feature vectors (input space: X = {0, 1}n)
• An adversary can modify input bits after training

(evasion attacks)
For example, we wish to be able to differentiate be-
tween 0’s and 1’s:

The image of a 0 should not be classified as a 1 if it
is slightly perturbed by an adversary:

Efficient Robust Learning:
We want to prove or disprove the existence of an
algorithm with polynomial sample complexity (in
the learning parameters and input dimension n) that
will output a hypothesis such that the probability of
drawing a new point that can be perturbed by an
adversary and resulting in a misclassification to be
small:

Exact-in-the-ball Robust Risk:
RE

ρ (h, c) = P
x∼D

(∃z ∈ Bρ(x) : h(z) ̸= c(z))

Take Away
• Adversary’s budget is a fundamental quantity determining the sample complexity of robust learning
• We can efficiently use standard PAC algorithms as black boxes for some robust learning problems
• Our paper: decision lists under smooth distributions

Open Problem

Is a sample-efficient PAC-learning algorithm for
concept class C also a sample-efficient

log(n)-robust learning algorithm for C under the
uniform distribution?

• From previous work [1]
• Focus on the boolean hypercube {0, 1}n

• Our sample complexity upper bound for
decision lists adds to the body of positive
evidence for this problem.

Decision Lists

A decision list f ∈ k-DL is a list of pairs
(K1, v1), . . . , (Kr, vr),

Kj: conjunction of size at most k with literals drawn
from {x1, x̄1, . . . , xn, x̄n}, vj ∈ {0, 1}, Kr = true.
The output f (x) on x ∈ {0, 1}n is vj, where j is the
least index s.t. Kj evaluates to true. Example:
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Smooth Distributions

α-Log-Lipschitz Distributions:
x1 = (0, . . . , 1, 1, 1, . . . , 0)
x2 = (0, . . . , 1, 0, 1, . . . , 0) =⇒ p(x1)

p(x2)
≤ α .

For e.g.: uniform distribution, product distribution
where the mean of each variable is bounded, etc.
Intuition: input points that are close to each other
cannot have vastly different probability masses.

Decision List Sample Complexity

Theorem: Decision lists are efficiently
log(n)-robustly learnable under smooth distri-
butions.

• A polynomial number of examples is enough to
return a hypothesis with small robust risk (with
high probability).

A Unifying Result.

SAT(φ)

SATρ(φ)
ρ

• φ ∈ k-CNF: φ(x) = ∧i∈I ∨1≤j≤k lij
• ρ(n) = log n

• SAT(φ) = {x ∈ X | φ(x) = 1}
• |SAT(φ)| ≤ poly(ε, 1/n) =⇒ |SATlog n(φ)| ≤ ε

Proof Idea

1 Event of an exit at depths d1, d2 for two k-DL =
a k-CNF formula φ = ∧i ∨k

j=1 zij
• Error between the hypothesis and ground truth

2 Induction on k: the log(n)-expansion of
satisfying assignments of φ (i.e., the robust risk)
isn’t too large
• Unifying result above

3 Controlling the standard risk =⇒ controlling
the robust risk
• The standard learning algorithm for k-DL is a robust

learner!

Monotone Conjunctions

“AND” of boolean variables:
thesis ∧ sleep deprivation ∧ caffeine

Concept classes that subsume monotone conjunc-
tions:
• Decision lists
• Decision trees
• Linear classifiers
Sample complexity lower bound for monotone con-
junctions holds for these classes as well.

Lower Bound

Theorem: Any ρ(n)-robust learning algorithm
for monotone conjunctions has a sample com-
plexity lower bound of Ω(2ρ(n)) under the uni-
form distribution.

• Any concept class that subsumes monotone
conjunctions require a sample size for robust
learning where there is an exponential
dependence on the adversary’s budget.

Proof Idea

• Two disjoint monotone conjunctions c1, c2 of
length 2ρ have robust risk Rρ(c1, c2) bounded
below by a constant

• A random sample of size m = Ω(2ρ) won’t be
able to distinguish c1 from c2 w.p. > 1/2
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