Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks

P. Gourdeau, V. Kanade, M. Kwiatkowska and J. Worrell

University of Oxford

Evasion Attacks

Example: distinguishing between handwritten 0's and 1's:

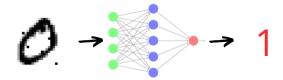
1111/11/11/11/11

Evasion Attacks

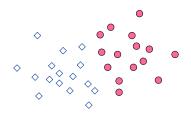
Example: distinguishing between handwritten 0's and 1's:

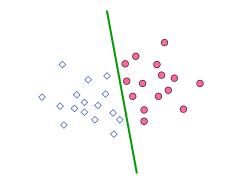
Evasion Attacks

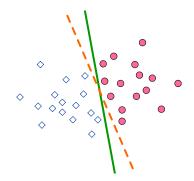
Example: distinguishing between handwritten 0's and 1's:

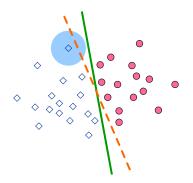


Question: How much data is needed for robust learning against evasion attacks?
 Spoiler: The *adversarial budget* is a fundamental quantity in the sample complexity of robust learning against evasion attacks









Goal: learn a function that will be *exact-in-the-ball* robust against an adversary who can perturb inputs

Result #1: Monotone conjunctions require $\Omega(2^{\rho})$ examples to be robustly learned under the uniform distribution.

Result #1: Monotone conjunctions require $\Omega(2^{\rho})$ examples to be robustly learned under the uniform distribution.

(adversary can perturb ρ bits)

"AND" of Boolean variables:

thesis \wedge sleep deprivation \wedge caffeine

"AND" of Boolean variables:

thesis \wedge sleep deprivation \wedge caffeine

Concept classes that subsume $\ensuremath{\mathsf{MON-CONJ}}$:

Decision lists

"AND" of Boolean variables:

thesis \wedge sleep deprivation \wedge caffeine

Concept classes that subsume $\ensuremath{\mathsf{MON-CONJ}}$:

Decision lists

Decision trees

"AND" of Boolean variables:

thesis \wedge sleep deprivation \wedge caffeine

Concept classes that subsume $\ensuremath{\mathsf{MON-CONJ}}$:

- Decision lists
- Decision trees
- Linear classifiers

"AND" of Boolean variables:

thesis \wedge sleep deprivation \wedge caffeine

Concept classes that subsume $\ensuremath{\mathsf{MON-CONJ}}$:

- Decision lists
- Decision trees
- Linear classifiers

"AND" of Boolean variables:

thesis \wedge sleep deprivation \wedge caffeine

Concept classes that subsume MON-CONJ :

- Decision lists
- Decision trees
- Linear classifiers

A sample complexity lower bound for MON-CONJ holds for these classes as well.

Sample Complexity Lower Bound

Theorem

For sufficiently large input dimension n, any $\rho(n)$ -robust learning algorithm for MON-CONJ has a sample complexity lower bound of $\Omega(2^{\rho(n)})$ under the uniform distribution.

Sample Complexity Lower Bound

Theorem

For sufficiently large input dimension n, any $\rho(n)$ -robust learning algorithm for MON-CONJ has a sample complexity lower bound of $\Omega(2^{\rho(n)})$ under the uniform distribution.

Proof Idea.

Two disjoint monotone conjunctions c₁, c₂ of length 2ρ have robust risk R_ρ(c₁, c₂) bounded below by a constant

Sample Complexity Lower Bound

Theorem

For sufficiently large input dimension n, any $\rho(n)$ -robust learning algorithm for MON-CONJ has a sample complexity lower bound of $\Omega(2^{\rho(n)})$ under the uniform distribution.

Proof Idea.

- Two disjoint monotone conjunctions c₁, c₂ of length 2ρ have robust risk R_ρ(c₁, c₂) bounded below by a constant
- A random sample of size m = Ω(2^ρ) won't be able to distinguish c₁ from c₂ w.p. > 1/2

Question: How much data is needed for robust learning against evasion attacks?
 Result #2: Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Question: How much data is needed for robust learning against evasion attacks?
 Result #2: Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

A polynomial number of examples is enough to return a hypothesis with small robust risk (with high probability). Question: How much data is needed for robust learning against evasion attacks?
 Result #2: Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

- A polynomial number of examples is enough to return a hypothesis with small robust risk (with high probability).
- Smooth = log-Lipschitz (e.g. uniform distribution, product distribution, etc.)

Is a sample-efficient PAC-learning algorithm for concept class C also a sample-efficient $\log(n)$ -robust learning algorithm for C under the uniform distribution?

¹From *On the Hardness of Robust Classification*, PG, VK, MK, JW, Journal of Machine Learning Research, 2021.

Is a sample-efficient PAC-learning algorithm for concept class C also a sample-efficient $\log(n)$ -robust learning algorithm for C under the uniform distribution?

Result #2 adds to the body of positive evidence for this problem.

¹From *On the Hardness of Robust Classification*, PG, VK, MK, JW, Journal of Machine Learning Research, 2021.

What is a decision list?

What is a decision list?

What is a decision list?

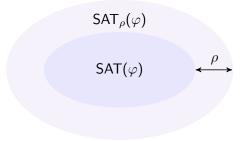
k-DL: k = size of conjunction in a node

What is a decision list?

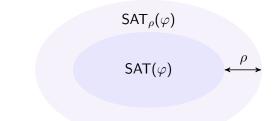
k-DL: k = size of conjunction in a node

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.



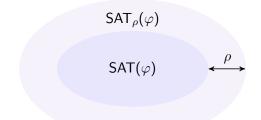
• $\varphi \in k$ -CNF: $\varphi(x) = \bigwedge_{i \in I} \bigvee_{1 \le j \le k} I_{ij}$



▶
$$\varphi \in k$$
-CNF: $\varphi(x) = \bigwedge_{i \in I} \bigvee_{1 \le j \le k} I_{ij}$
▶ $\rho(n) = \log n$

•
$$\varphi \in k$$
-CNF: $\varphi(x) = \bigwedge_{i \in I} \bigvee_{1 \le j \le k} l_{ij}$
• $\rho(n) = \log n$
• SAT $(\varphi) = \{x \in \mathcal{X} \mid \varphi(x) = 1\}$

A Unifying Result



•
$$\varphi \in k\text{-CNF: } \varphi(x) = \bigwedge_{i \in I} \bigvee_{1 \le j \le k} I_{ij}$$

• $\rho(n) = \log n$
• SAT $(\varphi) = \{x \in \mathcal{X} \mid \varphi(x) = 1\}$

► $|\mathsf{SAT}(\varphi)| \le \mathsf{poly}(\varepsilon, 1/n) \implies |\mathsf{SAT}_{\log n}(\varphi)| \le \varepsilon$

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Proof Idea.

1. Express the event of an exit at depths d_1, d_2 for two k-DL as a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Proof Idea.

1. Express the event of an exit at depths d_1, d_2 for two k-DL as a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$

Represents an error between the hypothesis and ground truth

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Proof Idea.

- 1. Express the event of an exit at depths d_1, d_2 for two k-DL as a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$
 - Represents an error between the hypothesis and ground truth
- 2. Induction on k: the log(n)-expansion of satisfying assignments of φ (i.e., the robust risk) isn't too large

Theorem

Decision lists are efficiently $\log(n)$ -robustly learnable under smooth distributions.

Proof Idea.

- 1. Express the event of an exit at depths d_1, d_2 for two k-DL as a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$
 - Represents an error between the hypothesis and ground truth
- 2. Induction on k: the log(n)-expansion of satisfying assignments of φ (i.e., the robust risk) isn't too large
 - Unifying result from previous slide

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Proof Idea.

- 1. Express the event of an exit at depths d_1, d_2 for two k-DL as a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$
 - Represents an error between the hypothesis and ground truth
- 2. Induction on k: the log(n)-expansion of satisfying assignments of φ (i.e., the robust risk) isn't too large
 - Unifying result from previous slide
- 3. Controlling the standard risk \implies controlling the **robust** risk

Theorem

Decision lists are efficiently log(n)-robustly learnable under smooth distributions.

Proof Idea.

- 1. Express the event of an exit at depths d_1, d_2 for two k-DL as a k-CNF formula $\varphi = \bigwedge_i \bigvee_{j=1}^k z_{ij}$
 - Represents an error between the hypothesis and ground truth
- 2. Induction on k: the log(n)-expansion of satisfying assignments of φ (i.e., the robust risk) isn't too large

Unifying result from previous slide

- 3. Controlling the standard risk \implies controlling the **robust** risk
 - The standard learning algorithm for k-DL is a robust learner!

The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning

- The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning
- We can efficiently use standard PAC learning algorithms as black boxes for certain robust learning problems

- The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning
- We can efficiently use standard PAC learning algorithms as black boxes for certain robust learning problems
 - Our paper: decision lists under smooth distributions

- The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning
- We can efficiently use standard PAC learning algorithms as black boxes for certain robust learning problems
 - Our paper: decision lists under smooth distributions
- Research directions:

- The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning
- We can efficiently use standard PAC learning algorithms as black boxes for certain robust learning problems
 - Our paper: decision lists under smooth distributions
- Research directions:
 - Tighter bounds for decision lists

- The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning
- We can efficiently use standard PAC learning algorithms as black boxes for certain robust learning problems
 - Our paper: decision lists under smooth distributions
- Research directions:
 - Tighter bounds for decision lists
 - Linear classifiers

- The adversary's budget is a fundamental quantity in determining the sample complexity of robust learning
- We can efficiently use standard PAC learning algorithms as black boxes for certain robust learning problems
 - Our paper: decision lists under smooth distributions
- Research directions:
 - Tighter bounds for decision lists
 - Linear classifiers
 - General PAC classes

Thank you!

Paper (arxiv version)