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Question

What distributional assumptions are needed
and how much power can we give an

adversary to ensure efficient robust learning?

Problem Setting

Our paper:
•Binary classification
•Binary feature vectors (input space: X = {0, 1}n)
•An adversary can modify input bits after training
(evasion attacks)

For example, we wish to be able to differentiate be-
tween 0’s and 1’s:

The image of a 0 should not be classified as a 1 if it
is slightly perturbed by an adversary:

Efficient Robust Learning:
In general, we want to prove or disprove the ex-
istence of an algorithm with polynomial sample
complexity (in the learning parameters and input
dimension n) that will output a hypothesis such that
the probability of drawing a new point that can be
perturbed by an adversary and resulting in a mis-
classification to be small:

But what counts as a misclassification?

Take Away
• Inadequacies of widely-used definitions of robustness surface under a learning theory perspective.
• It may be possible to only solve robust learning problems with strong distributional assumptions.
•Simple proof for computational hardness of robust learning.

Robust Risk Definitions

Constant-in-the-ball:
RCρ (h, c) = P

x∼D
(∃z ∈ Bρ(x) : h(z) 6= c(x))
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Figure: The robust loss is 0 on the LHS and 1 on the RHS.

Exact-in-the-ball:
REρ (h, c) = P

x∼D
(∃z ∈ Bρ(x) : h(z) 6= c(z))
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Figure: The robust loss is 0 on the LHS and 1 on the RHS.

Comparing robust risks:

(a) (b) (c)

(a) RCρ (h, c) = 0 only achievable if c is constant.
(b) There exist h such that RCρ (h, c) = 0.
(c) RCρ and REρ differ. The solid concept is the tar-
get, while the dashed one is the hypothesis. Shaded
regions represent the dots’ ρ-expansion. The crosses
are perturbed inputs causing REρ > 0, while RCρ = 0.
To us, the adversary’s power: creating perturbations
that cause the hypothesis and target functions to
disagree, so we use the exact-in-the-ball definition.

Distribution-Free Robust Learning

Theorem: Any concept class C is efficiently
distribution-free robustly learnable if and only
if it is trivial.

A class of functions is trivial if Cn has at most two
functions, and that they differ on every point.

Distributional assumptions are essential:

c1 = c2 c1 6= c2

Monotone Conjunctions

Question: How much power can we give an adver-
sary and still ensure efficient robust learnability?
Monotone conjunctions:

thesis ∧ sleep deprivation ∧ caffeine

Theorem: The threshold to robustly learn
monotone conjunctions under log-Lipschitz dis-
tributions is ρ(n) = O(log n).

ρ = O(log n): PAC algorithm is a robust learner.
ρ = ω(log n): no sample-efficient learning algorithm
exists.
α-Log-Lipschitz Distributions:

x1 = (0, . . . , 1, 1, 1, . . . , 0)
x2 = (0, . . . , 1, 0, 1, . . . , 0) =⇒ p(x1)

p(x2)
≤ α .

For e.g.: uniform distribution, product distribution
where the mean of each variable is bounded, etc.
Intuition: input points that are close to each other
cannot have vastly different probability masses.

Computational Hardness

•An information-theoretically easy problem can be
computationally hard.
•We give a simple proof of the computational
hardness of robust learning result of [1].
•We reduce a computationally hard PAC learning
problem to a robust learning problem.
•We use the trick from [1] of encoding a point’s
label in the input for the robust learning problem.

Reduction. Take a PAC learning problem for con-
cept and distribution classes C and D defined on
X = {0, 1}n. Define ϕk as follows:

ϕk(x) := x1 . . . x1x2 . . . xd−1xd . . . xd︸ ︷︷ ︸
2k+1 copies of each xi

c(x) ,

1 Blow up input space to X ′ = {0, 1}(2k+1)n+1.
2 New concept class:

C ′ = {c ◦maj2k+1 | c ∈ C} ,

where majl returns the majority vote on each
subsequent block of l bits, and ignores the last bit.

3 Distribution family D′: for each c ∈ C, D ∈ D,
we have a new D′ as follows for z ∈ X ′:

D(z) =



D(x) z = ϕk(x),
0 otherwise.

.

Reasoning.
•Any algorithm for learning C w.r.t. D yields an
algorithm for learning the pairs {(c′, D′)}.
•A robust learner cannot only rely on the last bit
of ϕk(x) (it could be flipped by an adversary).
•A robust learner can be used to PAC-learn Cn.
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