

DEPARTMENT OF COMPUTER SCIENCE

Question

What distributional assumptions are needed and how much power can we give an adversary to ensure efficient robust learning?

Problem Setting

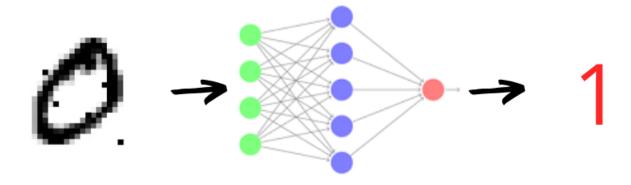
Our paper:

- Binary classification
- Binary feature vectors (input space: $\mathcal{X} = \{0, 1\}^n$)
- An adversary can modify input bits after training (evasion attacks)

For example, we wish to be able to differentiate between 0's and 1's:

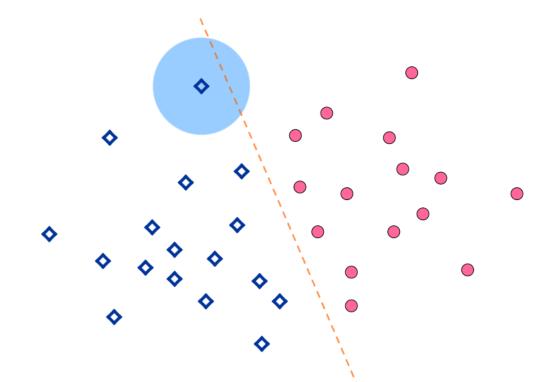
111111111111111

The image of a 0 should not be classified as a 1 if it is slightly perturbed by an adversary:



Efficient Robust Learning:

In general, we want to prove or disprove the existence of an algorithm with *polynomial sample* complexity (in the learning parameters and input dimension n) that will output a hypothesis such that the probability of drawing a new point that can be perturbed by an adversary and resulting in a misclassification to be small:



But what counts as a misclassification?

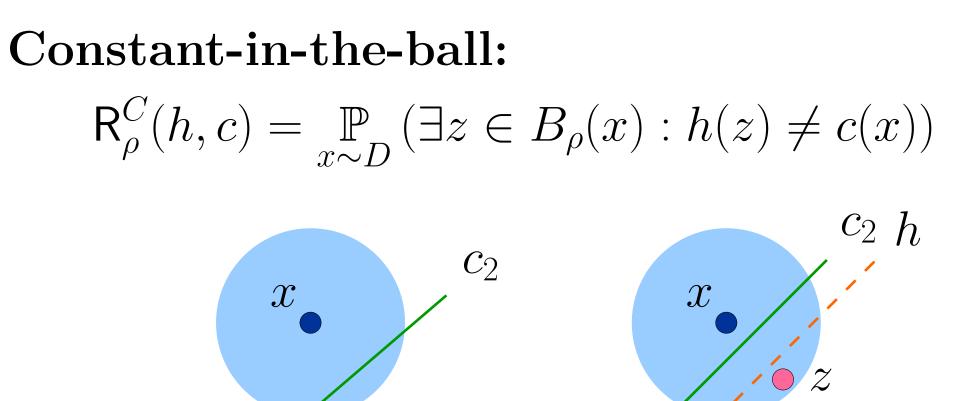
On the Hardness of Robust Classification

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska and James Worrell

Department of Computer Science, University of Oxford

Take Away

• Inadequacies of widely-used definitions of robustness surface under a learning theory perspective. • It may be possible to only solve robust learning problems with strong *distributional assumptions*. • Simple proof for computational hardness of robust learning.



Distributional assumptions are *essential*:

Figure: The robust loss is 0 on the LHS and 1 on the RHS.

Exact-in-the-ball:

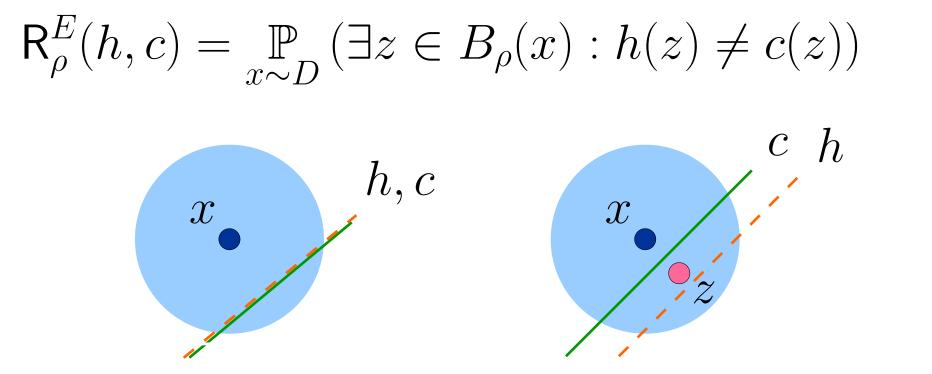
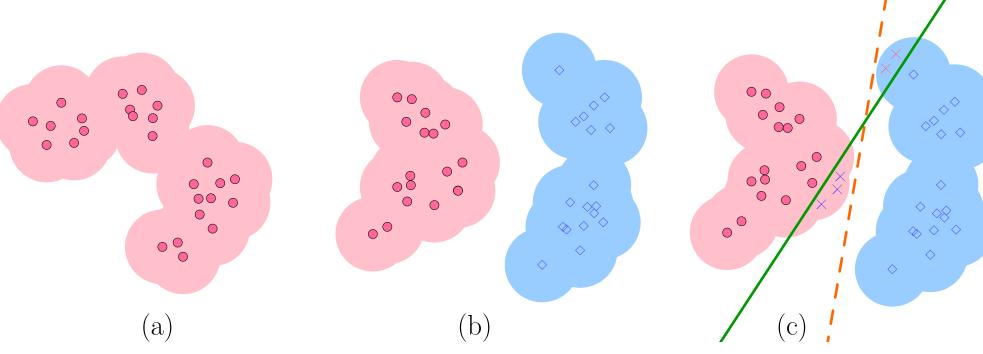


Figure: The robust loss is 0 on the LHS and 1 on the RHS.

Comparing robust risks:



(a) $\mathsf{R}_{o}^{C}(h, c) = 0$ only achievable if c is constant. (b) There exist h such that $\mathsf{R}_{\rho}^{C}(h, c) = 0$.

(c) R_{ρ}^{C} and R_{ρ}^{E} differ. The solid concept is the target, while the dashed one is the hypothesis. Shaded regions represent the dots' ρ -expansion. The crosses are perturbed inputs causing $\mathsf{R}^{E}_{\rho} > 0$, while $\mathsf{R}^{C}_{\rho} = 0$. To us, the adversary's power: creating perturbations that cause the hypothesis and target functions to disagree, so we use the *exact-in-the-ball* definition.

 $\rho = O(\log n)$: PAC algorithm is a robust learner. $\rho = \omega(\log n)$: no sample-efficient learning algorithm exists.

For e.g.: uniform distribution, product distribution where the mean of each variable is bounded, etc. **Intuition:** input points that are close to each other cannot have vastly different probability masses.

Distribution-Free Robust Learning

Theorem: Any concept class C is efficiently distribution-free robustly learnable if and only if it is trivial.

A class of functions is *trivial* if C_n has at most two functions, and that they differ on every point.

$$c_1 = c_2 \quad \bullet \quad \bullet \quad c_1 \neq c_2$$

Monotone Conjunctions

Question: How much power can we give an adversary and still ensure efficient robust learnability?

Monotone conjunctions:

thesis \land sleep deprivation \land caffeine

The threshold to robustly learn Theorem: monotone conjunctions under log-Lipschitz distributions is $\rho(n) = O(\log n)$.

α -Log-Lipschitz Distributions:

 $\begin{array}{l} x_1 = (0, \dots, 1, 1, 1, \dots, 0) \\ x_2 = (0, \dots, 1, 0, 1, \dots, 0) \end{array} \implies \frac{p(x_1)}{p(x_2)} \le \alpha \ . \end{array}$

Reduction. Take a PAC learning problem for concept and distribution classes $\mathcal C$ and $\mathcal D$ defined on $\mathcal{X} = \{0, 1\}^n$. Define φ_k as follows:

Reasoning.

- pages 10359–10368, 2018.

Computational Hardness

• An information-theoretically easy problem can be computationally hard.

• We give a simple proof of the computational hardness of robust learning result of [1].

• We reduce a computationally hard PAC learning problem to a robust learning problem.

• We use the trick from [1] of encoding a point's label in the input for the robust learning problem.

$$_{k}(x) := \underbrace{x_{1} \dots x_{1} x_{2} \dots x_{d-1} x_{d} \dots x_{d}}_{2k+1 \text{ copies of each } x_{i}} c(x) ,$$

1 Blow up input space to $\mathcal{X}' = \{0, 1\}^{(2k+1)n+1}$. 2 New concept class:

$$\mathcal{C}' = \{ c \circ \operatorname{maj}_{2k+1} \mid c \in \mathcal{C} \}$$

where maj_l returns the majority vote on each subsequent block of l bits, and ignores the last bit. **3** Distribution family \mathcal{D}' : for each $c \in \mathcal{C}, D \in \mathcal{D}$, we have a new D' as follows for $z \in \mathcal{X}'$:

$$D(z) = \begin{cases} D(x) & z = \varphi_k(x), \\ 0 & \text{otherwise.} \end{cases}$$

• Any algorithm for learning \mathcal{C} w.r.t. \mathcal{D} yields an algorithm for learning the pairs $\{(c', D')\}$. • A *robust* learner cannot only rely on the last bit of $\varphi_k(x)$ (it could be flipped by an adversary). • A *robust* learner can be used to PAC-learn C_n .

References

^[1] S. Bubeck, E. Price, and I. Razenshteyn. Adversarial examples from computational constraints. arXiv preprint arXiv:1805.10204, 2018.

^[2] D. Diochnos, S. Mahloujifar, and M. Mahmoody. Adversarial risk and robustness: General definitions and implications for the uniform distribution. In Advances in Neural Information Processing Systems,