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Robust Learning with Random Examples

A

Sc ∼ Dm h ∈ H
s.t.

Exact-in-the-ball: hypothesis = target in perturbation region

▶ ρ = adversary’s budget at test time

Previous work:

▶ Any distribution =⇒ can only robustly learn trivial concepts

▶ Uniform distribution =⇒ conjunctions (f (x) =
∧

i∈I xi ) and
superclasses need Ω(2ρ) sample points

What happens when we give more power to the learner?
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Local Membership Queries (LMQ) [Awasthi et al. 2013]
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Theorem
Even when adding LMQs, robustly learning conjunctions still needs
Ω(2ρ) joint sample and LMQ complexity under the uniform
distribution
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λ = ρ =⇒ robust learning is possible with a number of random
examples m linear in the robust VC dimension (RVC) and a
number of LEQ r = m ·M, where M is a mistake bound in the
online model
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Take Away

▶ LMQs don’t help robust learning with conjunctions and
superclasses

▶ LEQs enable robust learning iff λ ≥ ρ for many classes of
functions

▶ We get (improved) bounds for specific classes:

▶ conjunctions, linear classifiers

▶ Full picture isn’t clear yet: many open problems!
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