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Previous work:
» Any distribution = can only robustly learn trivial concepts

» Uniform distribution = conjunctions (f(x) = A;c, x;) and
superclasses need Q(2”) sample points

What happens when we give more power to the learner?
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General idea:

» (X, d) metric space
» Query region: By(x) ={z€ X |d(x,z) <A}
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X0
Z@

c(2)?

Theorem
Even when adding LMQ@s, robustly learning conjunctions still needs

Q(27) joint sample and LMQ complexity under the uniform
distribution
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A-LEQ); p-adversary

Theorem
A < p = robust learning is impossible for stable functions,
including monotone conjunctions
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A-LEQ; p-adversary

Theorem
A = p = robust learning is possible with a number of random
examples m linear in the robust VC dimension (RVC) and a

number of LEQ r = m - M, where M is a mistake bound in the
online model
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Take Away

» LMQs don't help robust learning with conjunctions and
superclasses
» LEQs enable robust learning iff A > p for many classes of
functions
» We get (improved) bounds for specific classes:
» conjunctions, linear classifiers

» Full picture isn't clear yet: many open problems!



Thank you!




